Integrable top equations associated with projective geometry over Z2

被引:4
|
作者
Fairlie, DB [1 ]
Ueno, T
机构
[1] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
[2] Osaka Univ, Grad Sch Sci, Dept Phys, Osaka 5600043, Japan
来源
关键词
D O I
10.1088/0305-4470/31/38/013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give a series of integrable top equations associated with the projective geometry over Z(2) as a (2(n) - 1)-dimensional generalization of the three-dimensional Euler top equations. The general solution of the (2(n) - I)-dimensional top is shown to be given by an integration over a Riemann surface with genus (2(n-1) - 1)(2).
引用
下载
收藏
页码:7785 / 7790
页数:6
相关论文
共 50 条
  • [1] Solvability Criteria for Cubic Equations over Z2*
    Saburov, Mansoor
    Ahmad, Mohd Ali Khameini
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES, 2014, 1602 : 792 - 797
  • [2] On the solution of certain equations with exponent sum 0 over Z2
    Ferlini, V
    Goldstein, R
    Salpukas, M
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2000, 10 (06) : 709 - 723
  • [3] Quantum computing and polynomial equations over the finite field Z2
    Dawson, CM
    Hines, AP
    Mortimer, D
    Haselgrove, HL
    Nielsen, MA
    Osborne, TJ
    QUANTUM INFORMATION & COMPUTATION, 2005, 5 (02) : 102 - 112
  • [4] N-Wave Equations with Orthogonal Algebras: Z2 and Z2 x Z2 Reductions and Soliton Solutions
    Gerdjikov, Vladimir S.
    Kostov, Nikolay A.
    Valchev, Tihomir I.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2007, 3
  • [5] On the dimension of H*((Z2)xt , Z2) as a module over Steenrod ring
    Dang Vo Phuc
    TOPOLOGY AND ITS APPLICATIONS, 2021, 303
  • [6] Convex minization over Z2
    Keijsper, J. C. M.
    Pendavingh, R. A.
    OPERATIONS RESEARCH LETTERS, 2011, 39 (01) : 53 - 56
  • [7] On linear codes over Z2
    Gupta, MK
    Bhandari, MC
    Lal, AK
    DESIGNS CODES AND CRYPTOGRAPHY, 2005, 36 (03) : 227 - 244
  • [8] The integrable open XXZ chain with broken Z2 symmetry
    Batchelor, MT
    GROUP 22: PROCEEDINGS OF THE XII INTERNATIONAL COLLOQUIUM ON GROUP THEORETICAL METHODS IN PHYSICS, 1998, : 261 - 265
  • [9] Smooth projective horospherical varieties of Picard group Z2
    Pasquier, Boris
    EPIJOURNAL DE GEOMETRIE ALGEBRIQUE, 2020, 4
  • [10] Self-dual cyclic and quantum codes over Z2 X (Z2
    Aydogdu, Ismail
    Abualrub, Taher
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2019, 11 (04)