We give a series of integrable top equations associated with the projective geometry over Z(2) as a (2(n) - 1)-dimensional generalization of the three-dimensional Euler top equations. The general solution of the (2(n) - I)-dimensional top is shown to be given by an integration over a Riemann surface with genus (2(n-1) - 1)(2).
机构:
Politecn Torino, Dipartimento Sci Matemat DISMA, Corso Duca Abruzzi 24, I-10129 Turin, ItalyPolitecn Torino, Dipartimento Sci Matemat DISMA, Corso Duca Abruzzi 24, I-10129 Turin, Italy
Manno, Gianni
Vollmer, Andreas
论文数: 0引用数: 0
h-index: 0
机构:
Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, AustraliaPolitecn Torino, Dipartimento Sci Matemat DISMA, Corso Duca Abruzzi 24, I-10129 Turin, Italy