Integrable top equations associated with projective geometry over Z2

被引:4
|
作者
Fairlie, DB [1 ]
Ueno, T
机构
[1] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
[2] Osaka Univ, Grad Sch Sci, Dept Phys, Osaka 5600043, Japan
来源
关键词
D O I
10.1088/0305-4470/31/38/013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give a series of integrable top equations associated with the projective geometry over Z(2) as a (2(n) - 1)-dimensional generalization of the three-dimensional Euler top equations. The general solution of the (2(n) - I)-dimensional top is shown to be given by an integration over a Riemann surface with genus (2(n-1) - 1)(2).
引用
收藏
页码:7785 / 7790
页数:6
相关论文
共 50 条