Quantum computing and polynomial equations over the finite field Z2

被引:0
|
作者
Dawson, CM [1 ]
Hines, AP
Mortimer, D
Haselgrove, HL
Nielsen, MA
Osborne, TJ
机构
[1] Univ Queensland, Sch Phys Sci, Brisbane, Qld 4072, Australia
[2] Univ Queensland, Ctr Quantum Comp Technol, Brisbane, Qld 4072, Australia
[3] Univ Queensland, Sch Phys Sci, Brisbane, Qld 4072, Australia
[4] Def Sci & Technol Org, Informat Sci Lab, Edinburgh, SA 5111, Australia
[5] Univ Queensland, Sch Informat Technol & Elect Engn, Brisbane, Qld 4072, Australia
[6] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
关键词
quantum; computing; complexity; polynomials;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
What is the computational power of a quantum computer? We show that determining the output of a quantum computation is equivalent to counting the number of solutions to an easily computed set of polynomials defined over the finite field Z(2). This connection allows simple proofs to be given for two known relationships between quantum and classical complexity classes, namely BQP subset of P-#P and BQP subset of PP.
引用
收藏
页码:102 / 112
页数:11
相关论文
共 50 条
  • [1] A software package to construct polynomial sets over Z2 for determining the output of quantum computations
    Gerdt, VP
    Severyanov, VM
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2006, 559 (01): : 260 - 264
  • [2] Self-dual cyclic and quantum codes over Z2 X (Z2
    Aydogdu, Ismail
    Abualrub, Taher
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2019, 11 (04)
  • [3] Solvability Criteria for Cubic Equations over Z2*
    Saburov, Mansoor
    Ahmad, Mohd Ali Khameini
    [J]. PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES, 2014, 1602 : 792 - 797
  • [4] SCALAR POLYNOMIAL EQUATIONS FOR MATRICES OVER A FINITE FIELD
    HODGES, JH
    [J]. DUKE MATHEMATICAL JOURNAL, 1958, 25 (02) : 291 - 296
  • [5] Minimal matrix centralizers over the field Z2
    Dolzan, David
    Bukovsek, Damjana Kokol
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (08): : 1114 - 1126
  • [6] Solvability of a system of bivariate polynomial equations over a finite field
    Kayal, N
    [J]. AUTOMATA, LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2005, 3580 : 551 - 562
  • [7] Chaotic behavior in a Z2 x Z2 field theory
    Latora, V
    Bazeia, D
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1999, 14 (31): : 4967 - 4984
  • [8] On the solution of certain equations with exponent sum 0 over Z2
    Ferlini, V
    Goldstein, R
    Salpukas, M
    [J]. INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2000, 10 (06) : 709 - 723
  • [9] Integrable top equations associated with projective geometry over Z2
    Fairlie, DB
    Ueno, T
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (38): : 7785 - 7790
  • [10] REPRESENTATIONS OF Z2 X Z2 GROUP IN FIELD OF CHARACTERISTIC 2
    BASHEV, VA
    [J]. DOKLADY AKADEMII NAUK SSSR, 1961, 141 (05): : 1015 - &