A note on Lyapunov exponents of deterministic strongly mixing potentials

被引:4
|
作者
Bourgain, Jean [1 ]
Bourgain-Chang, Eric [2 ]
机构
[1] Inst Adv Study, Princeton, NJ 08540 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
Lyapounov exponent; Schrodinger operator; transfer matrix;
D O I
10.4171/JST/89
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this Note, we consider 1D lattice Schrodinger operators with deterministic strongly mixing potentials as studied in [3] and [2] with very small coupling. We describe a scheme to establish positivity of the Lyapunov exponent from a statement at some fixed scale. The required input may then be derived from Furstenberg theory, if the underlying dynamics are sufficiently mixing, or verified directly by numerical means.
引用
下载
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [41] Parametric Lyapunov exponents
    De Thelin, Henry
    Gauthier, Thomas
    Vigny, Gabriel
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2021, 53 (03) : 660 - 672
  • [42] Flexibility of Lyapunov exponents
    Bochi, J.
    Katok, A.
    Hertz, F. Rodriguez
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2022, 42 (02) : 554 - 591
  • [43] INTEGRABILITY AND LYAPUNOV EXPONENTS
    Hammerlindl, Andy
    JOURNAL OF MODERN DYNAMICS, 2011, 5 (01) : 107 - 122
  • [44] RECURRENCE AND LYAPUNOV EXPONENTS
    Saussol, B.
    Troubetzkoy, S.
    Vaienti, S.
    MOSCOW MATHEMATICAL JOURNAL, 2003, 3 (01) : 189 - 203
  • [45] SECTIONAL LYAPUNOV EXPONENTS
    Arbieto, Alexander
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (09) : 3171 - 3178
  • [46] Quantum Lyapunov exponents
    Falsaperla, P
    Fonte, G
    Salesi, G
    FOUNDATIONS OF PHYSICS, 2002, 32 (02) : 267 - 294
  • [47] THE CURRENT LYAPUNOV EXPONENTS
    VAVRIV, DM
    RYABOV, VB
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1990, (02): : 48 - 50
  • [48] LYAPUNOV EXPONENTS FOR PEDESTRIANS
    EARNSHAW, JC
    HAUGHEY, D
    AMERICAN JOURNAL OF PHYSICS, 1993, 61 (05) : 401 - 407
  • [49] ISENTROPES AND LYAPUNOV EXPONENTS
    Buczolich, Zoltan
    Keszthelyi, Gabriella
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (04) : 1989 - 2009
  • [50] Differentiability of Lyapunov Exponents
    Thiago F. Ferraiol
    Luiz A. B. San Martin
    Journal of Dynamical and Control Systems, 2020, 26 : 289 - 310