A note on Lyapunov exponents of deterministic strongly mixing potentials

被引:4
|
作者
Bourgain, Jean [1 ]
Bourgain-Chang, Eric [2 ]
机构
[1] Inst Adv Study, Princeton, NJ 08540 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
Lyapounov exponent; Schrodinger operator; transfer matrix;
D O I
10.4171/JST/89
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this Note, we consider 1D lattice Schrodinger operators with deterministic strongly mixing potentials as studied in [3] and [2] with very small coupling. We describe a scheme to establish positivity of the Lyapunov exponent from a statement at some fixed scale. The required input may then be derived from Furstenberg theory, if the underlying dynamics are sufficiently mixing, or verified directly by numerical means.
引用
下载
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [11] Wave mixing rise inferred from Lyapunov exponents
    Alvaro Galan
    Alejandro Orfila
    Gonzalo Simarro
    Ismael Hernández-Carrasco
    Cristobal Lopez
    Environmental Fluid Mechanics, 2012, 12 : 291 - 300
  • [12] Wave mixing rise inferred from Lyapunov exponents
    Galan, Alvaro
    Orfila, Alejandro
    Simarro, Gonzalo
    Hernandez-Carrasco, Ismael
    Lopez, Cristobal
    ENVIRONMENTAL FLUID MECHANICS, 2012, 12 (03) : 291 - 300
  • [13] The Lyapunov exponents for Schrodinger operators with slowly oscillating potentials
    Simon, B
    Zhu, YF
    JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 140 (02) : 541 - 556
  • [14] FINITE TIME BEHAVIOR OF SMALL ERRORS IN DETERMINISTIC CHAOS AND LYAPUNOV EXPONENTS
    Nicolis, C.
    Nicolis, G.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (05): : 1339 - 1342
  • [15] UNIFIED THEORY OF LYAPUNOV EXPONENTS AND A POSITIVE EXAMPLE OF DETERMINISTIC QUANTUM CHAOS
    FAISAL, FHM
    SCHWENGELBECK, U
    PHYSICS LETTERS A, 1995, 207 (1-2) : 31 - 36
  • [16] Genericity of non-zero Lyapunov exponents for deterministic products of matrices
    Bonatti, C
    Gómez-Mont, X
    Viana, M
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (04): : 579 - 624
  • [17] Lyapunov exponents and rates of mixing for one-dimensional maps
    Alves, JF
    Luzzatto, S
    Pinheiro, V
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2004, 24 : 637 - 657
  • [18] Coincidence of Lyapunov exponents for random walks in weak random potentials
    Flury, Markus
    ANNALS OF PROBABILITY, 2008, 36 (04): : 1528 - 1583
  • [19] Lyapunov exponents and extensivity of strongly coupled chaotic maps in regular graphs
    Gancio, Juan
    Rubido, Nicolas
    CHAOS SOLITONS & FRACTALS, 2024, 178
  • [20] Lyapunov exponents, dual Lyapunov exponents, and multifractal analysis
    Fan, AH
    Jiang, YP
    CHAOS, 1999, 9 (04) : 849 - 853