Barrier Adaptive First Order Sliding Mode Differentiator

被引:1
|
作者
Obeid, H. [1 ]
Fridman, L. [2 ]
Laghrouche, S. [1 ]
Harmouche, M. [3 ]
机构
[1] Univ Bourgogne Franche Comte, UTBM, OPERA, Belfort, France
[2] Univ Nacl Autonoma Mexico, Fac Engn, Dept Robot & Control, Mexico City 04510, DF, Mexico
[3] Actility, Paris, France
来源
IFAC PAPERSONLINE | 2017年 / 50卷 / 01期
关键词
Sliding mode control;
D O I
10.1016/j.ifacol.2017.08.499
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An algorithm for adaptation of first order sliding mode differentiator gains is proposed for the case when the upper bound of the second derivative exists but it is unknown. The proposed barrier adaptive algorithm can ensure the convergence of the differentiator to some vicinity of the first derivative. Then, a convergence detection criteria is used to estimate the size of this vicinity. The properties of the proposed algorithm in the presence of noise are discussed. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1722 / 1727
页数:6
相关论文
共 50 条
  • [31] First order dynamic sliding mode control
    Pieper, JK
    PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 2415 - 2420
  • [32] Continuous and smooth differentiator based on adaptive sliding mode control for a quad-rotor MAV
    Castaneda, Herman
    Rodriguez, Jonathan
    Gordillo, Jose Luis
    ASIAN JOURNAL OF CONTROL, 2021, 23 (02) : 661 - 672
  • [33] Adaptive continuous higher order sliding mode control
    Edwards, Christopher
    Shtessel, Yuri B.
    AUTOMATICA, 2016, 65 : 183 - 190
  • [34] Robust and Adaptive Higher Order Sliding mode controllers
    Harmouche, Mohamed
    Laghrouche, Salah
    Chitour, Yacine
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 6436 - 6441
  • [35] Indirect Adaptive Control for Higher Order Sliding Mode
    Barth, Alexander
    Reger, Johann
    Moreno, Jaime A.
    IFAC PAPERSONLINE, 2018, 51 (13): : 591 - 596
  • [36] Systematic Approach to Design a Finite Time Convergent Differentiator in Second Order Sliding Mode Controller
    Rakhtala, S. M.
    Ranjbar, A.
    Ghaderi, R.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2013, 26 (11): : 1357 - 1368
  • [37] Robust fault diagnosis of disturbed linear systems via a sliding mode high order differentiator
    Javier Bejarano, Francisco
    Figueroa, Maricela
    Pacheco, Jaime
    de Jesus Rubio, Jose
    INTERNATIONAL JOURNAL OF CONTROL, 2012, 85 (06) : 648 - 659
  • [38] Barrier function-based adaptive sliding mode control
    Obeid, Hussein
    Fridman, Leonid M.
    Laghrouche, Salah
    Harmouche, Mohamed
    AUTOMATICA, 2018, 93 : 540 - 544
  • [39] A novel adaptive high-order sliding mode control based on integral sliding mode
    Liang Wang
    Yongzhi Sheng
    Xiangdong Liu
    International Journal of Control, Automation and Systems, 2014, 12 : 459 - 472
  • [40] A Novel Adaptive High-order Sliding Mode Control based on Integral Sliding Mode
    Wang, Liang
    Sheng, Yongzhi
    Liu, Xiangdong
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2014, 12 (03) : 459 - 472