Network Reconfiguration and Neuronal Plasticity in Rhythm-Generating Networks

被引:29
|
作者
Koch, Henner [1 ,2 ]
Garcia, Alfredo J., III [1 ]
Ramirez, Jan-Marino [1 ,2 ]
机构
[1] Seattle Childrens Res Inst, Ctr Integrat Brain Res, Seattle, WA 98101 USA
[2] Univ Washington, Dept Neurol Surg, Seattle, WA 98105 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
LONG-TERM FACILITATION; PRE-BOTZINGER COMPLEX; PERSISTENT SODIUM CURRENT; METABOTROPIC GLUTAMATE RECEPTORS; HOMEOSTATIC SYNAPTIC PLASTICITY; CORTICAL PYRAMIDAL NEURONS; NONSPECIFIC CATION CURRENT; CENTRAL PATTERN GENERATOR; IN-VITRO; RESPIRATORY NETWORK;
D O I
10.1093/icb/icr099
中图分类号
Q95 [动物学];
学科分类号
071002 ;
摘要
Neuronal networks are highly plastic and reconfigure in a state-dependent manner. The plasticity at the network level emerges through multiple intrinsic and synaptic membrane properties that imbue neurons and their interactions with numerous nonlinear properties. These properties are continuously regulated by neuromodulators and homeostatic mechanisms that are critical to maintain not only network stability and also adapt networks in a short-and long-term manner to changes in behavioral, developmental, metabolic, and environmental conditions. This review provides concrete examples from neuronal networks in invertebrates and vertebrates, and illustrates that the concepts and rules that govern neuronal networks and behaviors are universal.
引用
收藏
页码:856 / 868
页数:13
相关论文
共 50 条
  • [1] Computer simulation of rhythm-generating networks
    Igras, E
    Foweraker, JPA
    Ware, A
    Hulliger, M
    NEURONAL MECHANISMS FOR GENERATING LOCOMOTOR ACTIVITY, 1998, 860 : 483 - 485
  • [2] Plasticity of Respiratory Rhythm-Generating Mechanisms in Adult Goats
    Forster, Hubert V.
    Krause, Katie L.
    Kiner, Tom
    Neumueller, Suzanne E.
    Bonis, Josh M.
    Qian, Baogang
    Pan, Lawrence G.
    NEW FRONTIERS IN RESPIRATORY CONTROL, 2010, 669 : 151 - 155
  • [3] Different roles for inhibition in the rhythm-generating respiratory network
    Harris, Kameron Decker
    Dashevskiy, Tatiana
    Mendoza, Joshua
    Garcia, Alfredo J., III
    Ramirez, Jan-Marino
    Shea-Brown, Eric
    JOURNAL OF NEUROPHYSIOLOGY, 2017, 118 (04) : 2070 - 2088
  • [4] Glia Contribute to the Purinergic Modulation of Inspiratory Rhythm-Generating Networks
    Huxtable, Adrianne G.
    Zwicker, Jennifer D.
    Alvares, Tucaaue S.
    Ruangkittisakul, Araya
    Fang, Xin
    Hahn, Leanne B.
    de Chaves, Elena Posse
    Baker, Glen B.
    Ballanyi, Klaus
    Funk, Gregory D.
    JOURNAL OF NEUROSCIENCE, 2010, 30 (11): : 3947 - 3958
  • [5] 2θ-Burster for Rhythm-Generating Circuits
    Kelley, Aaron
    Shilnikov, Andrey
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2020, 6
  • [6] Orthogonal arrangement of rhythm-generating microcircuits in the hippocampus
    Gloveli, T
    Dugladze, T
    Rotstein, HG
    Traub, RD
    Monyer, H
    Heinemann, U
    Whittington, MA
    Kopell, NJ
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (37) : 13295 - 13300
  • [7] Motor pattern specification by dual descending pathways to a lobster rhythm-generating network
    Combes, D
    Meyrand, P
    Simmers, J
    JOURNAL OF NEUROSCIENCE, 1999, 19 (09): : 3610 - 3619
  • [8] Astroglial control of the respiratory rhythm-generating circuits
    Gourine, A.
    GLIA, 2019, 67 : E13 - E13
  • [9] Periodicity, mixed-mode oscillations, and quasiperiodicity in a rhythm-generating neural network
    Del Negro, CA
    Wilson, CG
    Butera, RJ
    Rigatto, H
    Smith, JC
    BIOPHYSICAL JOURNAL, 2002, 82 (01) : 206 - 214
  • [10] Activation of a lobster motor rhythm-generating network by disinhibition of permissive modulatory inputs
    Faumont, S
    Simmers, J
    Meyrand, P
    JOURNAL OF NEUROPHYSIOLOGY, 1998, 80 (05) : 2776 - 2780