Network Reconfiguration and Neuronal Plasticity in Rhythm-Generating Networks

被引:29
|
作者
Koch, Henner [1 ,2 ]
Garcia, Alfredo J., III [1 ]
Ramirez, Jan-Marino [1 ,2 ]
机构
[1] Seattle Childrens Res Inst, Ctr Integrat Brain Res, Seattle, WA 98101 USA
[2] Univ Washington, Dept Neurol Surg, Seattle, WA 98105 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
LONG-TERM FACILITATION; PRE-BOTZINGER COMPLEX; PERSISTENT SODIUM CURRENT; METABOTROPIC GLUTAMATE RECEPTORS; HOMEOSTATIC SYNAPTIC PLASTICITY; CORTICAL PYRAMIDAL NEURONS; NONSPECIFIC CATION CURRENT; CENTRAL PATTERN GENERATOR; IN-VITRO; RESPIRATORY NETWORK;
D O I
10.1093/icb/icr099
中图分类号
Q95 [动物学];
学科分类号
071002 ;
摘要
Neuronal networks are highly plastic and reconfigure in a state-dependent manner. The plasticity at the network level emerges through multiple intrinsic and synaptic membrane properties that imbue neurons and their interactions with numerous nonlinear properties. These properties are continuously regulated by neuromodulators and homeostatic mechanisms that are critical to maintain not only network stability and also adapt networks in a short-and long-term manner to changes in behavioral, developmental, metabolic, and environmental conditions. This review provides concrete examples from neuronal networks in invertebrates and vertebrates, and illustrates that the concepts and rules that govern neuronal networks and behaviors are universal.
引用
收藏
页码:856 / 868
页数:13
相关论文
共 50 条
  • [31] Dual oscillator model of the respiratory neuronal network generating quantal slowing of respiratory rhythm
    Lal, Amit
    Oku, Yoshitaka
    Huelsmann, Swen
    Okada, Yasumasa
    Miwakeichi, Fumikazu
    Kawai, Shigeharu
    Tamura, Yoshiyasu
    Ishiguro, Makio
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2011, 30 (02) : 225 - 240
  • [32] Dual oscillator model of the respiratory neuronal network generating quantal slowing of respiratory rhythm
    Amit Lal
    Yoshitaka Oku
    Swen Hülsmann
    Yasumasa Okada
    Fumikazu Miwakeichi
    Shigeharu Kawai
    Yoshiyasu Tamura
    Makio Ishiguro
    Journal of Computational Neuroscience, 2011, 30 : 225 - 240
  • [33] Differential ontogeny of GABAB-receptor-mediated pre- and postsynaptic modulation of GABA and glycine transmission in respiratory rhythm-generating network in mouse
    Zhang, W
    Barnbrock, A
    Gajic, S
    Pfeiffer, A
    Ritter, B
    JOURNAL OF PHYSIOLOGY-LONDON, 2002, 540 (02): : 435 - 446
  • [34] The microglial networks of the brain and their role in neuronal network plasticity after lesion
    Cullheim, Staffan
    Thams, Sebastian
    BRAIN RESEARCH REVIEWS, 2007, 55 (01) : 89 - 96
  • [35] Role of glutamate in locomotor rhythm generating neuronal circuitry
    Gezelius, Henrik
    Wallen-Mackenzie, Asa
    Enjin, Anders
    Lagerstrom, Malin
    Kullander, Klas
    JOURNAL OF PHYSIOLOGY-PARIS, 2006, 100 (5-6) : 297 - 303
  • [36] NMDA receptor-dependent switching between different gamma rhythm-generating microcircuits in entorhinal cortex
    Middleton, Steven
    Jalics, Jozsi
    Kispersky, Tillman
    LeBeau, Fiona E. N.
    Roopun, Anita K.
    Kopell, Nancy J.
    Whittington, Miles A.
    Cunningham, Mark O.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (47) : 18572 - 18577
  • [37] The adrenergic modulation of firings of respiratory rhythm-generating neurons in medulla-spinal cord preparation from newborn rat
    Arata, A
    Onimaru, H
    Homma, I
    EXPERIMENTAL BRAIN RESEARCH, 1998, 119 (04) : 399 - 408
  • [38] Synaptic plasticity in micropatterned neuronal networks
    Vogt, AK
    Wrobel, G
    Meyer, W
    Knoll, W
    Offenhäusser, A
    BIOMATERIALS, 2005, 26 (15) : 2549 - 2557
  • [39] The adrenergic modulation of firings of respiratory rhythm-generating neurons in medulla-spinal cord preparation from newborn rat
    Akiko Arata
    H. Onimaru
    Ikuo Homma
    Experimental Brain Research, 1998, 119 : 399 - 408
  • [40] Synchronization and Rhythm Transition in a Complex Neuronal Network
    Wang, Yuan
    Shi, Xia
    Cheng, Bo
    Chen, Junliang
    IEEE ACCESS, 2020, 8 : 102436 - 102448