2θ-Burster for Rhythm-Generating Circuits

被引:4
|
作者
Kelley, Aaron [1 ]
Shilnikov, Andrey [1 ,2 ]
机构
[1] Georgia State Univ, Neurosci Inst, Atlanta, GA 30303 USA
[2] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
关键词
central pattern generator; r multistability; phase-lag; neuron; model; PATTERN; SYNCHRONIZATION; STABILITY;
D O I
10.3389/fams.2020.588904
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a minimalistic model called the 2 theta-burster due to two slow phase characteristics of endogenous bursters, which when coupled in 3-cell neural circuits generate a multiplicity of stable rhythmic outcomes. This model offers the benefits of simplicity for designing larger neural networks along with an acute reduction in the computation cost. We developed a dynamical system framework for explaining the existence and robustness of phase-locked states in activity patterns produced by small rhythmic neural circuits. Several 3-cell configurations, from multifunctional to monostable, are considered to demonstrate the versatility of the proposed approach, allowing the network dynamics to be reduced to the examination of 2D Poincare return maps for the phase lags between three constituent 2 theta-bursters.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Astroglial control of the respiratory rhythm-generating circuits
    Gourine, A.
    GLIA, 2019, 67 : E13 - E13
  • [2] Modulation and dynamic specification of motor rhythm-generating circuits in crustacea
    Simmers, J
    Meyrand, P
    Moulins, M
    JOURNAL OF PHYSIOLOGY-PARIS, 1995, 89 (4-6) : 195 - 208
  • [3] Astrocytes modulate brainstem respiratory rhythm-generating circuits and determine exercise capacity
    Sheikhbahaei, Shahriar
    Turovsky, Egor A.
    Hosford, Patrick S.
    Hadjihambi, Anna
    Theparambil, Shefeeq M.
    Liu, Beihui
    Marina, Nephtali
    Teschemacher, Anja G.
    Kasparov, Sergey
    Smith, Jeffrey C.
    Gourine, Alexander V.
    NATURE COMMUNICATIONS, 2018, 9
  • [4] Astrocytes modulate brainstem respiratory rhythm-generating circuits and determine exercise capacity
    Shahriar Sheikhbahaei
    Egor A. Turovsky
    Patrick S. Hosford
    Anna Hadjihambi
    Shefeeq M. Theparambil
    Beihui Liu
    Nephtali Marina
    Anja G. Teschemacher
    Sergey Kasparov
    Jeffrey C. Smith
    Alexander V. Gourine
    Nature Communications, 9
  • [5] Computer simulation of rhythm-generating networks
    Igras, E
    Foweraker, JPA
    Ware, A
    Hulliger, M
    NEURONAL MECHANISMS FOR GENERATING LOCOMOTOR ACTIVITY, 1998, 860 : 483 - 485
  • [6] Orthogonal arrangement of rhythm-generating microcircuits in the hippocampus
    Gloveli, T
    Dugladze, T
    Rotstein, HG
    Traub, RD
    Monyer, H
    Heinemann, U
    Whittington, MA
    Kopell, NJ
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (37) : 13295 - 13300
  • [7] Multiple Rhythm-Generating Circuits Act in Tandem with Pacemaker Properties to Control the Start and Speed of Locomotion
    Song, Jianren
    Pallucchi, Irene
    Ausborn, Jessica
    Ampatzis, Konstantinos
    Bertuzzi, Maria
    Fontanel, Pierre
    Picton, Laurence D.
    El Manira, Abdeljabbar
    NEURON, 2020, 105 (06) : 1048 - +
  • [8] Plasticity of Respiratory Rhythm-Generating Mechanisms in Adult Goats
    Forster, Hubert V.
    Krause, Katie L.
    Kiner, Tom
    Neumueller, Suzanne E.
    Bonis, Josh M.
    Qian, Baogang
    Pan, Lawrence G.
    NEW FRONTIERS IN RESPIRATORY CONTROL, 2010, 669 : 151 - 155
  • [9] Different roles for inhibition in the rhythm-generating respiratory network
    Harris, Kameron Decker
    Dashevskiy, Tatiana
    Mendoza, Joshua
    Garcia, Alfredo J., III
    Ramirez, Jan-Marino
    Shea-Brown, Eric
    JOURNAL OF NEUROPHYSIOLOGY, 2017, 118 (04) : 2070 - 2088
  • [10] Network Reconfiguration and Neuronal Plasticity in Rhythm-Generating Networks
    Koch, Henner
    Garcia, Alfredo J., III
    Ramirez, Jan-Marino
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2011, 51 (06) : 856 - 868