FAST ALGORITHMS FOR ADAPTIVE FREE KNOT SPLINE APPROXIMATION USING NONUNIFORM BIORTHOGONAL SPLINE WAVELETS

被引:6
|
作者
Bittner, Kai [1 ]
Brachtendorf, Hans Georg [1 ]
机构
[1] Univ Appl Sci Upper Austria, A-4232 Hagenberg, Austria
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2015年 / 37卷 / 02期
基金
奥地利科学基金会;
关键词
splines; spline wavelets; free knot spline approximation; SPARSE EVALUATION; ONDELETTES;
D O I
10.1137/14095354X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
New algorithms for fast wavelet transforms with biorthogonal spline wavelets on nonuniform grids are presented. In contrast to classical wavelet transforms, the algorithms are not based on filter coefficients, but on algorithms for B-spline expansions (differentiation, Oslo algorithm, etc.). Due to inherent properties of the spline wavelets, the algorithm can be modified for spline grid refinement or coarsening. The performance of the algorithms is demonstrated by numerical tests of the adaptive spline methods in circuit simulation.
引用
收藏
页码:B283 / B304
页数:22
相关论文
共 50 条
  • [1] Biorthogonal spline type wavelets
    He, TX
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 48 (09) : 1319 - 1334
  • [2] Biorthogonal nonuniform B-spline wavelets based on a discrete norm
    Pan, Rijing
    Yao, Zhiqiang
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2009, 26 (04) : 480 - 492
  • [3] Computing the Hilbert transform using biorthogonal spline wavelets
    Martin F.
    Wegert E.
    [J]. Journal of Mathematical Sciences, 2013, 189 (1) : 150 - 163
  • [4] Fast algorithms for periodic spline wavelets on sparse grids
    Bittner, K
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 20 (04): : 1192 - 1213
  • [5] Optimized Construction of Biorthogonal Spline-Wavelets
    Cerna, Dana
    Finek, Vaclav
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 134 - 137
  • [6] Multivariate compactly supported biorthogonal spline wavelets
    Salvatori M.
    Soardi P.M.
    [J]. Annali di Matematica Pura ed Applicata, 2002, 181 (2) : 161 - 179
  • [7] Free-knot spline approximation of stochastic processes
    Creutzig, Jakob
    Mueller-Gronbach, Thomas
    Ritter, Klaus
    [J]. JOURNAL OF COMPLEXITY, 2007, 23 (4-6) : 867 - 889
  • [8] Spline approximation using knot density functions
    Crampton, Andrew
    Forbes, Alistair B.
    [J]. ALGORITHMS FOR APPROXIMATION, PROCEEDINGS, 2007, : 249 - +
  • [9] Biorthogonal spline wavelets on the interval - Stability and moment conditions
    Dahmen, W
    Kunoth, A
    Urban, K
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1999, 6 (02) : 132 - 196
  • [10] New Stable Biorthogonal Spline-Wavelets on the Interval
    Miriam Primbs
    [J]. Results in Mathematics, 2010, 57 : 121 - 162