Multivariate compactly supported biorthogonal spline wavelets

被引:1
|
作者
Salvatori M. [1 ]
Soardi P.M. [2 ]
机构
[1] Dipartimento di Matematica, Università di Milano, 20133Milano
[2] Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca, 20126 Milano
关键词
Mathematics Subject Classification (2000). 42C15, 42C40;
D O I
10.1007/s102310100033
中图分类号
学科分类号
摘要
We study biorthogonal bases of compactly supported wavelets constructed from box splines in ℝN with any integer dilation factor. For a suitable class of box splines we write explicitly dual low-pass filters of arbitrarily high regularity and indicate how to construct the corresponding high-pass filters (primal and dual).
引用
收藏
页码:161 / 179
页数:18
相关论文
共 50 条
  • [1] Construction of trivariate compactly supported biorthogonal box spline wavelets
    He, WJ
    Lai, MJ
    [J]. JOURNAL OF APPROXIMATION THEORY, 2003, 120 (01) : 1 - 19
  • [2] Multivariate compactly supported fundamental refinable functions, duals, and biorthogonal wavelets
    Ji, H
    Riemenschneider, SD
    Shen, ZW
    [J]. STUDIES IN APPLIED MATHEMATICS, 1999, 102 (02) : 173 - 204
  • [3] BIORTHOGONAL BASES OF COMPACTLY SUPPORTED WAVELETS
    COHEN, A
    DAUBECHIES, I
    FEAUVEAU, JC
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (05) : 485 - 560
  • [4] Biorthogonal interpolating wavelets with compactly supported duals
    Shui, PL
    Bao, Z
    [J]. ICSP '98: 1998 FOURTH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, PROCEEDINGS, VOLS I AND II, 1998, : 309 - 312
  • [5] Construction of compactly supported biorthogonal wavelets II
    Riemenschneider, SD
    Shen, ZW
    [J]. WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING VII, 1999, 3813 : 264 - 272
  • [6] Construction of bivariate compactly supported biorthogonal box spline wavelets with arbitrarily high regularities
    He, WJ
    Lai, MJ
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1999, 6 (01) : 53 - 74
  • [7] Construction of trivariate biorthogonal compactly supported wavelets
    Sun, Lei
    Cheng, Zhengxing
    Huang, Yongdong
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 34 (05) : 1412 - 1420
  • [8] Biorthogonal M -Channel Compactly Supported Wavelets
    P. M. Soardi
    [J]. Constructive Approximation, 2000, 16 : 283 - 311
  • [9] Craya decomposition using compactly supported biorthogonal wavelets
    Deriaz, Erwan
    Farge, Marie
    Schneider, Kai
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2010, 28 (03) : 267 - 284
  • [10] Construction of bivariate nonseparable compactly supported biorthogonal wavelets
    Leng, Jin-Song
    Huang, Ting-Zhu
    Fu, Ying-Ding
    [J]. PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2008, : 3625 - 3629