FAST ALGORITHMS FOR ADAPTIVE FREE KNOT SPLINE APPROXIMATION USING NONUNIFORM BIORTHOGONAL SPLINE WAVELETS

被引:6
|
作者
Bittner, Kai [1 ]
Brachtendorf, Hans Georg [1 ]
机构
[1] Univ Appl Sci Upper Austria, A-4232 Hagenberg, Austria
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2015年 / 37卷 / 02期
基金
奥地利科学基金会;
关键词
splines; spline wavelets; free knot spline approximation; SPARSE EVALUATION; ONDELETTES;
D O I
10.1137/14095354X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
New algorithms for fast wavelet transforms with biorthogonal spline wavelets on nonuniform grids are presented. In contrast to classical wavelet transforms, the algorithms are not based on filter coefficients, but on algorithms for B-spline expansions (differentiation, Oslo algorithm, etc.). Due to inherent properties of the spline wavelets, the algorithm can be modified for spline grid refinement or coarsening. The performance of the algorithms is demonstrated by numerical tests of the adaptive spline methods in circuit simulation.
引用
收藏
页码:B283 / B304
页数:22
相关论文
共 50 条
  • [31] Algorithms to design adaptive biorthogonal MRA generating wavelets
    Raghuveer, MR
    Chapa, JO
    [J]. WAVELET APPLICATIONS III, 1996, 2762 : 40 - 44
  • [32] Fast converging elitist genetic algorithm for knot adjustment in B-spline curve approximation
    Bureick, Johannes
    Alkhatib, Hamza
    Neumann, Ingo
    [J]. JOURNAL OF APPLIED GEODESY, 2019, 13 (04) : 317 - 328
  • [33] Spline-wavelets of free knots for signal processing
    Guan, LT
    [J]. ICSP '96 - 1996 3RD INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, PROCEEDINGS, VOLS I AND II, 1996, : 311 - 314
  • [34] Construction of bivariate compactly supported biorthogonal box spline wavelets with arbitrarily high regularities
    He, WJ
    Lai, MJ
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1999, 6 (01) : 53 - 74
  • [35] Document segmentation using polynomial spline wavelets
    Deng, SL
    Latifi, S
    Regentova, E
    [J]. PATTERN RECOGNITION, 2001, 34 (12) : 2533 - 2545
  • [36] Circular Bernstein-Bezier spline approximation with knot removal
    Cusimano, C
    Stanley, S
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 155 (01) : 177 - 185
  • [37] Ten good reasons for using spline wavelets
    Unser, M
    [J]. WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING V, 1997, 3169 : 422 - 431
  • [38] Regression function estimation using spline wavelets
    Uddin, MK
    Naik-Nimbalkar, UV
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2005, 34 (04) : 823 - 832
  • [39] Adaptive properties of spline-wavelet approximation
    Dem’yanovich Y.K.
    Anolik M.V.
    Ivantsova O.N.
    [J]. Journal of Mathematical Sciences, 2015, 207 (2) : 176 - 194
  • [40] Adaptive knot placement using a GMM-based continuous optimization algorithm in B-spline curve approximation
    Zhao Xiuyang
    Zhang Caiming
    Yang Bo
    Li Pingping
    [J]. COMPUTER-AIDED DESIGN, 2011, 43 (06) : 598 - 604