A novel analysis for heat transfer enhancement in a trapezoidal fin wetted by MoS2 + Fe3O4 + NiZnFe2O4- methanol based ternary hybrid nanofluid

被引:18
|
作者
Kumar, R. S. Varun [1 ]
Sowmya, G. [2 ]
机构
[1] Davangere Univ, Dept Studies Math, Davangere, India
[2] MS Ramaiah Inst Technol, Dept Math, Bangalore, Karnataka, India
关键词
Heat transfer; nanofluid; ternary nanofluid; fin; wetted fins; GENERATION;
D O I
10.1080/17455030.2022.2134605
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Nanofluids have grasped the attention of numerous researchers due to their enhanced thermal properties and heat transport performance. Recently, the mixture of ternary nanoparticles is exploited to synthesize a unique nanofluid that has superior thermal features. In this regard, the effects of internal heat generation, thermal radiation, and convection on a steady heat transfer mechanism in a trapezoidal fin wetted with ternary hybrid nanofluid are scrutinized in this investigation. Additionally, this research explores the comparative assessment of thermal and heat energy variations in both dry and wet conditions. The non-dimensional transformations result in the governing differential equation and boundary conditions being reduced to dimensionless expressions of an ordinary differential equation (ODE). A numerical method Runge-Kutta-Fehlberg's fourth-fifth is employed to solve the yielded differential equation of temperature. In addition, the effects of pertinent thermal variables on the thermal profile of the fin are explored graphically. The outcomes reveal that improving the surface radiation variable lowers the thermal profile, and the same behavior is detected for the surface convection parameter. Furthermore, the fluids comprising ternary nanoparticles have the greatest thermal variation. Also, the longitudinal trapezoidal fin has the optimum performance, and higher heat transfer characteristics compared to the typical straight fin.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] MoS2 Nanoflowers Decorated with Fe3O4/Graphite Nanosheets for Controllable Electromagnetic Wave Absorption
    Qin, Zhaohui
    Wang, Chunyu
    Ma, Yuanyuan
    Sun, Zhongyan
    Zhong, Bo
    Li, Xingji
    Zhang, Peng
    ACS APPLIED NANO MATERIALS, 2021, 4 (04) : 3434 - 3443
  • [42] Gold nanorods incorporated into a MoS2/Fe3O4 nanocomposite for photothermal therapy and drug delivery
    Shariati, Behdad
    Goodarzi, Mohammad Taghi
    Jalali, Alireza
    Salehi, Nasrin
    Mozaffari, Majid
    NEW JOURNAL OF CHEMISTRY, 2023, 47 (43) : 20100 - 20108
  • [43] Tough and stretchable Fe3O4/MoS2/PAni composite hydrogels with conductive and magnetic properties
    Hu, Hengfeng
    Zhong, Ximing
    Yang, Shuibin
    Fu, Heqing
    COMPOSITES PART B-ENGINEERING, 2020, 182
  • [44] Controlled addition of Fe3O4 for enhancing photocarrier generation in MoS2 visible light photodetector
    Praisudan, S.
    Kathirvel, P.
    Ram, S. D. Gopal
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2024, 35 (01)
  • [45] Entropy analysis and hydrothermal behavior of magnetohydrodynamic MOS2-Fe3O4/H2O hybrid nanofluid flow driven by buoyancy in a square enclosure with diverse fin heights
    Basha, H. Thameem
    Sivaraj, R.
    Jang, Bongsoo
    PHYSICS OF FLUIDS, 2023, 35 (12)
  • [46] Synthesis of MoS2/Fe3O4 nanocomposites with peroxidase-like activity for applications in H2O2 and glucose detection
    Nandwana, Vikas
    Huang, Wenyuan
    Roth, Eric
    Dravid, Vinayak
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [47] Experimental study on viscosity of Al2O3/Fe3O4 hybrid nanofluid according to different surfactant additives
    Ham, Jeonggyun
    Shin, Yunchan
    Cho, Honghyun
    INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, 2019, 16 (4-5) : 237 - 243
  • [48] Heat transfer and entropy generation analysis of hybrid graphene/Fe3O4 ferro-nanofluid flow under the influence of a magnetic field
    Mehrali, Mohammad
    Sadeghinezhad, Emad
    Akhiani, Amir Reza
    Latibari, Sara Tahan
    Metselaar, Hendrik Simon Cornelis
    Kherbeet, A. Sh.
    Mehrali, Mehdi
    POWDER TECHNOLOGY, 2017, 308 : 149 - 157
  • [49] Volume fraction effects on thermophysical properties of Fe3O4/MWCNT based hybrid nanofluid
    Purree, Sumbul
    Nadeem, Muhammad
    Shahzad, Azeem
    Zubair, Muhammad
    Akhtar, Muhammad Saeed
    Khalid, Muhammad
    Sadiq, Imran
    Khan, Hasan Mehmood
    Zahra, Sarwat
    INTERNATIONAL JOURNAL OF NANOELECTRONICS AND MATERIALS, 2021, 14 (01): : 27 - 36
  • [50] Assessment of Fe3O4–water nanofluid for enhancing laminar convective heat transfer in a car radiator
    Misagh Tafakhori
    Davood Kalantari
    Pourya Biparva
    S. M. Peyghambarzadeh
    Journal of Thermal Analysis and Calorimetry, 2021, 146 : 841 - 853