Assessment of Fe3O4–water nanofluid for enhancing laminar convective heat transfer in a car radiator

被引:0
|
作者
Misagh Tafakhori
Davood Kalantari
Pourya Biparva
S. M. Peyghambarzadeh
机构
[1] Sari Agricultural Sciences and Natural Resources University,Department of Mechanics of Biosystems Engineering, Faculty of Agricultural Engineering
[2] Sari Agricultural Sciences and Natural Resources University,Department of Basic Sciences
[3] Islamic Azad University,Department of Chemical Engineering, Mahshahr Branch
关键词
Iron oxide nanoparticles; Nanofluid; Laminar flow; Heat exchanger;
D O I
暂无
中图分类号
学科分类号
摘要
Increasing the heat transfer rate in car radiators by using nanofluids leads to better control of engine temperature at hard working conditions and reduces the required radiator dimensions. However, due to the possibility of disposal of radiator coolants in the environment, use of an eco-friendly nanofluid coolant is of particular importance. Therefore, in the current research, Fe3O4–water nanofluids with the nominal particle diameter of 28 nm were synthesized. The experiments were performed at vol% ranging from zero to 0.9, three radiator input temperatures (72, 80 and 88 °C) and four radiator fan speeds (1000, 1500, 2000 and 2500 rpm). Although the fluid flow rate was constant in this study, Re number varied in a narrow range (30–100) according to the change in the nanofluid concentration. It is interesting to say that the best working condition of the radiator obtained at 0.1 vol% and more increase in the nanoparticle concentration deteriorated the heat transfer. At 0.1 vol%, the heat exchanging performance of the radiator is improved by an average of 21% in comparison with the pure water. At this concentration, maximum Re number was also obtained according to the measured density and viscosity of the nanofluids. It can be concluded that at higher nanofluid concentrations (> 0.1 vol%), not only the particle agglomeration but also Re number reduction may lead to heat transfer deterioration. Moreover, at 0.1 vol% of nanoparticles, the outlet coolant temperature from the radiator decreased with increasing the radiator fan speed from 1000 to 2500 rpm. However, for temperatures more than 80 °C, the difference between the output fluid temperature at the fan speeds of 2000 and 2500 rpm was not significant. Therefore, as an overall conclusion, the concentration of 0.1 vol% and fan speed of 2000 rpm could be recommended in the car radiator with inlet temperatures at the range of 80–88 °C.
引用
收藏
页码:841 / 853
页数:12
相关论文
共 50 条
  • [1] Assessment of Fe3O4-water nanofluid for enhancing laminar convective heat transfer in a car radiator
    Tafakhori, Misagh
    Kalantari, Davood
    Biparva, Pourya
    Peyghambarzadeh, S. M.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2021, 146 (02) : 841 - 853
  • [2] Convective heat transfer and friction factor of aqueous Fe3O4 nanofluid flow under laminar regime
    Hosseinzadeh, Mojtaba
    Heris, Saeed Zeinali
    Beheshti, Amir
    Shanbedi, Mehdi
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2016, 124 (02) : 827 - 838
  • [3] Effect of magnetic field on laminar forced convective heat transfer of MWCNT–Fe3O4/water hybrid nanofluid in a heated tube
    Jalal Alsarraf
    Reza Rahmani
    Amin Shahsavar
    Masoud Afrand
    Somchai Wongwises
    Minh Duc Tran
    Journal of Thermal Analysis and Calorimetry, 2019, 137 : 1809 - 1825
  • [4] Investigating control of convective heat transfer and flow resistance of Fe3O4/deionized water nanofluid in magnetic field in laminar flow
    Gao, Dongdong
    Bai, Minli
    Hu, Chengzhi
    Lv, Jizu
    Wang, Chenfei
    Zhang, Xue
    NANOTECHNOLOGY, 2020, 31 (49)
  • [5] Convective heat transfer and friction factor of aqueous Fe3O4 nanofluid flow under laminar regimeAn experimental investigation
    Mojtaba Hosseinzadeh
    Saeed Zeinali Heris
    Amir Beheshti
    Mehdi Shanbedi
    Journal of Thermal Analysis and Calorimetry, 2016, 124 : 827 - 838
  • [6] Natural convective heat transfer of Fe3O4/ethylene glycol nanofluid in electric field
    Asadzadeh, F.
    Esfahany, M. Nasr
    Etesami, N.
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2012, 62 : 114 - 119
  • [7] Enhancing heat transfer rate in a car radiator by using Al2O3 nanofluid as a coolant
    Arunkumar, T.
    Anish, M.
    Jayaprabakar, J.
    Beemkumar, N.
    INTERNATIONAL JOURNAL OF AMBIENT ENERGY, 2019, 40 (04) : 367 - 373
  • [8] The effect of constant magnetic field on convective heat transfer of Fe3O4/water magnetic nanofluid in horizontal circular tubes
    Sun, Bin
    Guo, Yongjian
    Yang, Di
    Li, Hongwei
    APPLIED THERMAL ENGINEERING, 2020, 171 (171)
  • [9] The influence of the magnetic field on the convective heat transfer characteristics of Fe3O4/water nanofluids
    Sha, Lili
    Ju, Yonglin
    Zhang, Hua
    APPLIED THERMAL ENGINEERING, 2017, 126 : 108 - 116
  • [10] Study of Fe3O4-water nanofluid with convective heat transfer in the presence of magnetic source
    Sheikholeslami, M.
    Ellahi, R.
    Vafai, K.
    ALEXANDRIA ENGINEERING JOURNAL, 2018, 57 (02) : 565 - 575