Tornado Occurrences in the United States: A Spatio-Temporal Point Process Approach

被引:12
|
作者
Valente, Fernanda [1 ]
Laurini, Marcio [1 ]
机构
[1] FEARP USP, Av Bandeirantes,3900 Vila Monte Alegre, BR-14040905 Ribeirao Preto, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Spatial Point Process; Log Gaussian Cox Process; tornado occurrences; MODELS; CLIMATOLOGY; INFERENCE; WIDTH;
D O I
10.3390/econometrics8020025
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper, we analyze the tornado occurrences in the Unites States. To perform inference procedures for the spatio-temporal point process we adopt a dynamic representation of Log-Gaussian Cox Process. This representation is based on the decomposition of intensity function in components of trend, cycles, and spatial effects. In this model, spatial effects are also represented by a dynamic functional structure, which allows analyzing the possible changes in the spatio-temporal distribution of the occurrence of tornadoes due to possible changes in climate patterns. The model was estimated using Bayesian inference through the Integrated Nested Laplace Approximations. We use data from the Storm Prediction Center's Severe Weather Database between 1954 and 2018, and the results provided evidence, from new perspectives, that trends in annual tornado occurrences in the United States have remained relatively constant, supporting previously reported findings.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 50 条
  • [41] Some edge correction methods for marked spatio-temporal point process models
    Cronie, Ottmar
    Sarkka, Aila
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (07) : 2209 - 2220
  • [42] Spatio-Temporal Graph Neural Point Process for Traffic Congestion Event Prediction
    Jin, Guangyin
    Liu, Lingbo
    Li, Fuxian
    Huang, Jincai
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 12, 2023, : 14268 - 14276
  • [43] Spatio-temporal point processes: Methods and applications
    Diggle, Peter J.
    STATISTICAL METHODS FOR SPATIO-TEMPORAL SYSTEMS, 2007, 107 : 1 - 45
  • [44] A changepoint analysis of spatio-temporal point processes
    Altieri, Linda
    Scott, E. Marian
    Cocchi, Daniela
    Illian, Janine B.
    SPATIAL STATISTICS, 2015, 14 : 197 - 207
  • [45] Spatio-temporal change-point modeling
    Majumdar, A
    Gelfand, AE
    Banerjee, S
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 130 (1-2) : 149 - 166
  • [46] Spatio-Temporal Hawkes Point Processes: A Review
    Bernabeu, Alba
    Zhuang, Jiancang
    Mateu, Jorge
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2025, 30 (01) : 89 - 119
  • [47] Local Clustering in Spatio-Temporal Point Patterns
    Mateu, Jorge
    Rodriguez-Cortes, Francisco J.
    MATHEMATICS OF PLANET EARTH, 2014, : 171 - 174
  • [48] Mark variograms for spatio-temporal point processes
    Stoyan, Dietrich
    Rodriguez-Cortes, Francisco J.
    Mateu, Jorge
    Gille, Wilfried
    SPATIAL STATISTICS, 2017, 20 : 125 - 147
  • [49] A New Covariance Function and Spatio-Temporal Prediction (Kriging) for A Stationary Spatio-Temporal Random Process
    Rao, T. Subba
    Terdik, Gyorgy
    JOURNAL OF TIME SERIES ANALYSIS, 2017, 38 (06) : 936 - 959
  • [50] Spatio-temporal databases - The CHOROCHRONOS approach
    Koubarakis, M
    Sellis, T
    SPATIO-TEMPORAL DATABASES: THE CHROCHRONOS APPROACH, 2003, 2520 : 1 - 8