Dynamics of a diffusive Leslie-Gower predator-prey system with ratio-dependent Holling III functional response

被引:5
|
作者
Chang, Xiaoyuan [1 ]
Zhang, Jimin [2 ,3 ]
机构
[1] Harbin Univ Sci & Technol, Sch Appl Sci, Harbin, Heilongjiang, Peoples R China
[2] Heilongjiang Univ, Sch Math Sci, Harbin, Heilongjiang, Peoples R China
[3] Heilongjiang Univ, Heilongjiang Prov Key Lab Theory & Computat Compl, Harbin, Heilongjiang, Peoples R China
关键词
Leslie-Gower predator-prey system; Hopf bifurcation; Nonconstant positive solutions; Equilibrium; Ratio-dependent Holling III functional response; 92D25; 35K57; STATIONARY PATTERNS; BIFURCATION-ANALYSIS; GLOBAL STABILITY; MODEL;
D O I
10.1186/s13662-019-2018-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to investigating the dynamics of a diffusive Leslie-Gower predator-prey system with ratio-dependent Holling III functional response. We first establish the stability of positive constant equilibrium, and show the condition under which system undergoes a Hopf bifurcation with the explicit computational formulas for determining the bifurcating properties. Especially, when the positive constant equilibrium loses its stability, a supercritical Hopf bifurcation with spatial homogeneous and stable bifurcating periodic solution occurs. Finally, we discuss the existence and nonexistence of nonconstant positive solutions with the help of Leray-Schauder degree theory and the implicit function theorem.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Global dynamics of a ratio-dependent Holling-Tanner predator-prey system
    Ding, Wei
    Huang, Wenzhang
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 460 (01) : 458 - 475
  • [42] Spatiotemporal patterns in a diffusive predator-prey system with Leslie-Gower term and social behavior for the prey
    Souna, Fethi
    Lakmeche, Abdelkader
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (18) : 13920 - 13944
  • [43] GLOBAL STABILITY AND HOPF BIFURCATION IN A DELAYED DIFFUSIVE LESLIE-GOWER PREDATOR-PREY SYSTEM
    Chen, Shanshan
    Shi, Junping
    Wei, Junjie
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (03):
  • [44] Permanence for a delayed discrete ratio-dependent predator-prey system with Holling type functional response
    Fan, YH
    Li, WT
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 299 (02) : 357 - 374
  • [45] MULTISTABILITY ON A LESLIE-GOWER TYPE PREDATOR-PREY MODEL WITH NONMONOTONIC FUNCTIONAL RESPONSE
    Gonzalez-Yanez, Betsabe
    Gonzalez-Olivares, Eduardo
    Mena-Lorca, Jaime
    [J]. BIOMAT 2006, 2007, : 359 - +
  • [46] On the dynamics of a Leslie-Gower predator-prey ternary model with intraguild
    Accarino, C.
    Capone, F.
    De Luca, R.
    Massa, G.
    [J]. RICERCHE DI MATEMATICA, 2023,
  • [47] Impulsive perturbations of a predator-prey system with modified Leslie-Gower and Holling type II schemes
    Zhao Z.
    Yang L.
    Chen L.
    [J]. Journal of Applied Mathematics and Computing, 2011, 35 (1-2) : 119 - 134
  • [48] Positive solutions of a diffusive predator-prey model with modified Leslie-Gower and Holling-type II schemes
    Zhou, Jun
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (02) : 1380 - 1393
  • [49] Stability for a diffusive delayed predator-prey model with modified Leslie-Gower and Holling-type II schemes
    Yanling Tian
    [J]. Applications of Mathematics, 2014, 59 : 217 - 240
  • [50] A delayed ratio-dependent predator-prey model of interacting populations with Holling type III functional response
    Pal, Pallav Jyoti
    Mandal, Prashanta Kumar
    Lahiri, Kaushik Kumar
    [J]. NONLINEAR DYNAMICS, 2014, 76 (01) : 201 - 220