GLOBAL STABILITY AND HOPF BIFURCATION IN A DELAYED DIFFUSIVE LESLIE-GOWER PREDATOR-PREY SYSTEM

被引:58
|
作者
Chen, Shanshan [1 ,2 ]
Shi, Junping [2 ]
Wei, Junjie [1 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Heilongjiang, Peoples R China
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
来源
基金
美国国家科学基金会;
关键词
Predator-prey; delay; reaction-diffusion; Hopf bifurcation; global stability; POSITIVE STEADY-STATES; ASYMPTOTIC-BEHAVIOR; MODEL; CONVERGENCE; EQUILIBRIUM; DYNAMICS;
D O I
10.1142/S0218127412500617
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider a delayed diffusive Leslie-Gower predator-prey system with homogeneous Neumann boundary conditions. The stability/instability of the coexistence equilibrium and associated Hopf bifurcation are investigated by analyzing the characteristic equations. Furthermore, using the upper and lower solutions method, we give a sufficient condition on parameters so that the coexistence equilibrium is globally asymptotically stable.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Hopf Bifurcation in a Delayed Diffusive Leslie-Gower Predator-Prey Model with Herd Behavior
    Zhang, Fengrong
    Li, Yan
    Li, Changpin
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (04):
  • [2] Global Stability in The Delayed Leslie-Gower Predator-Prey System
    Wang, Wenlong
    Mang, Shufang
    Zhang, Chunrui
    [J]. PROCEEDINGS OF THE 7TH CONFERENCE ON BIOLOGICAL DYNAMIC SYSTEM AND STABILITY OF DIFFERENTIAL EQUATION, VOLS I AND II, 2010, : 299 - 307
  • [3] Stability and Hopf bifurcation analysis on a delayed Leslie-Gower predator-prey system incorporating a prey refuge
    Li, Yongkun
    Li, Changzhao
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) : 4576 - 4589
  • [4] Bifurcation and stability analysis for a delayed Leslie-Gower predator-prey system
    Yuan, Sanling
    Song, Yongli
    [J]. IMA JOURNAL OF APPLIED MATHEMATICS, 2009, 74 (04) : 574 - 603
  • [5] Hopf Bifurcation of a Modified Leslie-Gower Predator-Prey System
    Liu, Wei
    Fu, Chaojin
    [J]. COGNITIVE COMPUTATION, 2013, 5 (01) : 40 - 47
  • [6] Turing instability and Hopf bifurcation in a diffusive Leslie-Gower predator-prey model
    Peng, Yahong
    Liu, Yangyang
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (14) : 4158 - 4170
  • [7] Two delays induce Hopf bifurcation and double Hopf bifurcation in a diffusive Leslie-Gower predator-prey system
    Du, Yanfei
    Niu, Ben
    Wei, Junjie
    [J]. CHAOS, 2019, 29 (01)
  • [8] HOPF BIFURCATION ANALYSIS FOR A DELAYED LESLIE-GOWER PREDATOR-PREY SYSTEM WITH DIFFUSION EFFECTS
    Wang, Lin-Lin
    Zhou, Bei-Bei
    Fan, Yong-Hong
    [J]. INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2014, 7 (01)
  • [9] Stability and global Hopf bifurcation in a Leslie-Gower predator-prey model with stage structure for prey
    Meng, Xin-You
    Huo, Hai-Feng
    Zhang, Xiao-Bing
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2019, 60 (1-2) : 1 - 25
  • [10] Steady-state bifurcation and Hopf bifurcation for a diffusive Leslie-Gower predator-prey model
    Li, Shanbing
    Wu, Jianhua
    Nie, Hua
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (12) : 3043 - 3056