GLOBAL STABILITY AND HOPF BIFURCATION IN A DELAYED DIFFUSIVE LESLIE-GOWER PREDATOR-PREY SYSTEM

被引:58
|
作者
Chen, Shanshan [1 ,2 ]
Shi, Junping [2 ]
Wei, Junjie [1 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Heilongjiang, Peoples R China
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
来源
基金
美国国家科学基金会;
关键词
Predator-prey; delay; reaction-diffusion; Hopf bifurcation; global stability; POSITIVE STEADY-STATES; ASYMPTOTIC-BEHAVIOR; MODEL; CONVERGENCE; EQUILIBRIUM; DYNAMICS;
D O I
10.1142/S0218127412500617
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider a delayed diffusive Leslie-Gower predator-prey system with homogeneous Neumann boundary conditions. The stability/instability of the coexistence equilibrium and associated Hopf bifurcation are investigated by analyzing the characteristic equations. Furthermore, using the upper and lower solutions method, we give a sufficient condition on parameters so that the coexistence equilibrium is globally asymptotically stable.
引用
收藏
页数:11
相关论文
共 50 条