Diameter of PA random graphs with edge-step functions

被引:3
|
作者
Alves, Caio [1 ]
Ribeiro, Rodrigo [2 ]
Sanchis, Remy [3 ]
机构
[1] Univ Leipzig, Inst Math, Leipzig, Germany
[2] PUC Chile, Macul, Chile
[3] Univ Fed Minas Gerais, Dept Matemat, Belo Horizonte, MG, Brazil
基金
巴西圣保罗研究基金会;
关键词
cliques; complex networks; concentration bounds; diameter; preferential attachment; scale-free; small-world; PHASE-TRANSITION;
D O I
10.1002/rsa.20929
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this work we prove general bounds for the diameter of random graphs generated by a preferential attachment model whose parameter is a function f:N ->[0,1] that drives the asymptotic proportion between the numbers of vertices and edges. These results are sharp when f is a regularly varying function at infinity with strictly negative index of regular variation -gamma. For this particular class, we prove a characterization for the diameter that depends only on -gamma. More specifically, we prove that the diameter of such graphs is of order 1/gamma with high probability, although its vertex set order goes to infinity polynomially. Sharp results for the diameter for a wide class of slowly varying functions are also obtained.
引用
收藏
页码:612 / 636
页数:25
相关论文
共 50 条
  • [41] On size, order, diameter and edge-connectivity of graphs
    Ali, P.
    Mazorodze, J. P.
    Mukwembi, S.
    Vetrik, T.
    [J]. ACTA MATHEMATICA HUNGARICA, 2017, 152 (01) : 11 - 24
  • [42] Edge fault-diameter of Cartesian product of graphs
    Banic, Iztok
    Zerovnik, Janez
    [J]. STRUCTURAL INFORMATION AND COMMUNICATION COMPLEXITY, PROCEEDINGS, 2007, 4474 : 234 - +
  • [43] Total domination edge critical graphs with minimum diameter
    van der Merwe, LC
    Mynhardt, CM
    Haynes, TW
    [J]. ARS COMBINATORIA, 2003, 66 : 79 - 96
  • [44] CORRIGENDUM TO "MINIMUM EDGE CUTS IN DIAMETER 2 GRAPHS"
    Bickle, Allan
    Schwenk, Allen
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2023,
  • [45] On size, order, diameter and edge-connectivity of graphs
    P. Ali
    J. P. Mazorodze
    S. Mukwembi
    T. Vetrík
    [J]. Acta Mathematica Hungarica, 2017, 152 : 11 - 24
  • [46] The average distance and the diameter of dense random regular graphs
    Shimizu, Nobutaka
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (03): : 1 - 20
  • [47] The range of thresholds for diameter 2 in random Cayley graphs
    Christofides, Demetres
    Markstrom, Klas
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2014, 35 : 141 - 154
  • [48] UPPER TAILS FOR EDGE EIGENVALUES OF RANDOM GRAPHS
    Bhattacharya, Bhaswar B.
    Ganguly, Shirshendu
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (02) : 1069 - 1083
  • [49] Localization on Quantum Graphs with Random Edge Lengths
    Klopp, Frederic
    Pankrashkin, Konstantin
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2009, 87 (1-2) : 99 - 114
  • [50] Spectra of edge-independent random graphs
    Lu, Linyuan
    Peng, Xing
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (04):