Estimation of global SCS curve numbers using satellite remote sensing and geospatial data

被引:56
|
作者
Hong, Y. [1 ,2 ]
Adler, R. F. [2 ]
机构
[1] Univ Maryland Baltimore Cty, Goddard Earth Sci Technol Ctr, Baltimore, MD 21228 USA
[2] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA
基金
美国国家航空航天局;
关键词
D O I
10.1080/01431160701264292
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The Soil Conservation Service Curve Number (SCS CN) method is an efficient and widely used method for determining the direct runoff (effective rainfall) from a storm event for flood disaster assessment (rainfall-runoff modelling). The CN can be estimated based on the area's hydrologic soil group (HSG), land use/cover, and hydrologic condition. The two former factors are of greater importance in determining the CN value. This study reports an attempt to derive a global CN map. First, HSG was classified from digital soil maps. Second, CN was estimated as a function of HSG, land-cover classification, and hydrologic conditions according to USDA (1986) and NEH-4 (1997) standard lookup tables. Potential applications of this CN map may include real-time global flood assessment by incorporating an operational multisatellite precipitation estimation system (e.g. http://trmm.gsfc.nasa.gov).
引用
收藏
页码:471 / 477
页数:7
相关论文
共 50 条
  • [41] ASSESSMENT AND MAPPING OF URBAN ENVIRONMENTAL QUALITY USING REMOTE SENSING AND GEOSPATIAL DATA
    Danai, Ifanti
    Tsakiri, Maria-Strati
    Mallinis, Giorgos
    Georgiadis, Harris
    Kaimaris, Dimitris
    Patias, Petros
    SIXTH INTERNATIONAL CONFERENCE ON REMOTE SENSING AND GEOINFORMATION OF THE ENVIRONMENT (RSCY2018), 2018, 10773
  • [42] Reconciling the global terrestrial water budget using satellite remote sensing
    Sahoo, Alok K.
    Pan, Ming
    Troy, Tara J.
    Vinukollu, Raghuveer K.
    Sheffield, Justin
    Wood, Eric F.
    REMOTE SENSING OF ENVIRONMENT, 2011, 115 (08) : 1850 - 1865
  • [43] EARTHQUAKE INTENSITY ESTIMATION AND DAMAGE DETECTION USING REMOTE SENSING DATA FOR GLOBAL RESCUE OPERATIONS
    Hosokawa, Masafumi
    Jeong, Byeong-pyo
    Takizawa, Osamu
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 671 - +
  • [44] Geospatial Web Service for Remote Sensing data visualization
    Hu, Chunyang
    Zhao, Yongwang
    Li, Jing
    Ma, Dianfu
    Li, Xuan
    25TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION NETWORKING AND APPLICATIONS (AINA 2011), 2011, : 594 - 601
  • [45] FIELD ESTIMATION FOR CORN AND WHEAT IN THE HUNGARIAN GREAT PLAIN USING SATELLITE REMOTE-SENSING DATA
    HAMAR, D
    FERENCZ, C
    LICHTENBERGER, J
    TARCSAI, G
    FERENCZARKOS, I
    NOVENYTERMELES, 1995, 44 (02): : 147 - 160
  • [46] A Conceptual Model of Surface Reflectance Estimation for Satellite Remote Sensing Images Using in situ Reference Data
    Chen, Hsien-Wei
    Cheng, Ke-Sheng
    REMOTE SENSING, 2012, 4 (04): : 934 - 949
  • [47] Sugarcane Yield Estimation Using Satellite Remote Sensing Data in Empirical or Mechanistic Modeling: A Systematic Review
    Silva, Nildson Rodrigues
    Chaves, Michel Eustaquio Dantas
    Luciano, Ana Claudia dos Santos
    Sanches, Ieda Del'Arco
    de Almeida, Claudia Maria
    Adami, Marcos
    REMOTE SENSING, 2024, 16 (05)
  • [48] INTEGRATED SATELLITE REMOTE SENSING AND GEOSPATIAL ANALYSIS FOR TSUNAMI RISK ASSESSMENT
    Sambah, Abu Bakar
    Miura, Fusanori
    Guntur
    Fuad
    INTERNATIONAL JOURNAL OF GEOMATE, 2018, 14 (44): : 96 - 101
  • [49] Crop yield estimation by satellite remote sensing
    Ferencz, C
    Bognár, P
    Lichtenberger, J
    Hamar, D
    Tarcsai, G
    Timár, G
    Molnár, G
    Pásztor, S
    Steinbach, P
    Székely, B
    Ferencz, OE
    Ferencz-Arkos, I
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2004, 25 (20) : 4113 - 4149
  • [50] Optical Concealment Depth Estimation Algorithm Based on Satellite Remote Sensing Data
    Zhu Hairong
    Zhu Hai
    Cai Peng
    Li Weiyu
    Shi Yingni
    Liu Jintao
    LASER & OPTOELECTRONICS PROGRESS, 2018, 55 (08)