Estimation of global SCS curve numbers using satellite remote sensing and geospatial data

被引:56
|
作者
Hong, Y. [1 ,2 ]
Adler, R. F. [2 ]
机构
[1] Univ Maryland Baltimore Cty, Goddard Earth Sci Technol Ctr, Baltimore, MD 21228 USA
[2] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA
基金
美国国家航空航天局;
关键词
D O I
10.1080/01431160701264292
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The Soil Conservation Service Curve Number (SCS CN) method is an efficient and widely used method for determining the direct runoff (effective rainfall) from a storm event for flood disaster assessment (rainfall-runoff modelling). The CN can be estimated based on the area's hydrologic soil group (HSG), land use/cover, and hydrologic condition. The two former factors are of greater importance in determining the CN value. This study reports an attempt to derive a global CN map. First, HSG was classified from digital soil maps. Second, CN was estimated as a function of HSG, land-cover classification, and hydrologic conditions according to USDA (1986) and NEH-4 (1997) standard lookup tables. Potential applications of this CN map may include real-time global flood assessment by incorporating an operational multisatellite precipitation estimation system (e.g. http://trmm.gsfc.nasa.gov).
引用
收藏
页码:471 / 477
页数:7
相关论文
共 50 条
  • [21] Use of satellite remote sensing data in the mapping of global landslide susceptibility
    Hong, Yang
    Adler, Robert
    Huffman, George
    NATURAL HAZARDS, 2007, 43 (02) : 245 - 256
  • [22] Use of satellite remote sensing data in the mapping of global landslide susceptibility
    Yang Hong
    Robert Adler
    George Huffman
    Natural Hazards, 2007, 43 : 245 - 256
  • [23] GLOBAL HABITABILITY AND REMOTE-SENSING - THE ROLE OF METEOROLOGICAL SATELLITE DATA
    GREEGOR, DH
    NORWINE, J
    SCIENCE OF THE TOTAL ENVIRONMENT, 1986, 55 : 187 - 196
  • [24] Biomass estimation using satellite remote sensing data - An investigation on possible approaches for natural forest
    Roy, PS
    Ravan, SA
    JOURNAL OF BIOSCIENCES, 1996, 21 (04) : 535 - 561
  • [25] ACCURACY ASSESSMENT IN COTTON ACREAGE ESTIMATION USING INDIAN REMOTE-SENSING SATELLITE DATA
    DUTTA, S
    SHARMA, SA
    KHERA, AP
    AJAI
    YADAV, M
    HOODA, RS
    MOTHIKUMAR, KE
    MANCHANDA, ML
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 1994, 49 (06) : 21 - 26
  • [26] WATER YIELD MODEL USING SCS CURVE NUMBERS - DISCUSSION
    HAWKINS, RH
    JOURNAL OF THE HYDRAULICS DIVISION-ASCE, 1977, 103 (08): : 933 - 936
  • [27] Estimation of summer evapotranspiration using satellite remote sensing data over the Heihe river basin
    Tian, Hui
    Wen, Jun
    Ma, Yao-Ming
    Wang, Jie-Ming
    Lu, Shi-Hua
    Zhang, Tang-Tang
    Sun, Fang-Lin
    Liu, Rong
    Shuikexue Jinzhan/Advances in Water Science, 2009, 20 (01): : 18 - 24
  • [28] Improved remote sensing reference evapotranspiration estimation using simple satellite data and machine learning
    Liu, Dan
    Wang, Zhongjing
    Wang, Lei
    Chen, Jibin
    Li, Congcong
    Shi, Yujia
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 947
  • [29] Suitability of satellite remote sensing data for yield estimation in northeast Germany
    Vallentin, Claudia
    Harfenmeister, Katharina
    Itzerott, Sibylle
    Kleinschmit, Birgit
    Conrad, Christopher
    Spengler, Daniel
    PRECISION AGRICULTURE, 2022, 23 (01) : 52 - 82
  • [30] Actual evapotranspiration estimation by means of airborne and satellite remote sensing data
    Ciraolo, Giuseppe
    D'Urso, Guido
    Minacapilli, Mario
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY VIII, 2006, 6359