Estimation of global SCS curve numbers using satellite remote sensing and geospatial data

被引:56
|
作者
Hong, Y. [1 ,2 ]
Adler, R. F. [2 ]
机构
[1] Univ Maryland Baltimore Cty, Goddard Earth Sci Technol Ctr, Baltimore, MD 21228 USA
[2] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA
基金
美国国家航空航天局;
关键词
D O I
10.1080/01431160701264292
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The Soil Conservation Service Curve Number (SCS CN) method is an efficient and widely used method for determining the direct runoff (effective rainfall) from a storm event for flood disaster assessment (rainfall-runoff modelling). The CN can be estimated based on the area's hydrologic soil group (HSG), land use/cover, and hydrologic condition. The two former factors are of greater importance in determining the CN value. This study reports an attempt to derive a global CN map. First, HSG was classified from digital soil maps. Second, CN was estimated as a function of HSG, land-cover classification, and hydrologic conditions according to USDA (1986) and NEH-4 (1997) standard lookup tables. Potential applications of this CN map may include real-time global flood assessment by incorporating an operational multisatellite precipitation estimation system (e.g. http://trmm.gsfc.nasa.gov).
引用
收藏
页码:471 / 477
页数:7
相关论文
共 50 条
  • [1] Estimation of seasonal runoff using remote sensing satellite data
    Sorman, AU
    Saydam, C
    REMOTE SENSING AND GEOGRAPHIC INFORMATION SYSTEMS FOR DESIGN AND OPERATION OF WATER RESOURCES SYSTEMS, 1997, (242): : 103 - 112
  • [2] Development of an NRCS curve number global dataset using the latest geospatial remote sensing data for worldwide hydrologic applications
    Zeng, Ziyue
    Tang, Guoqiang
    Hong, Yang
    Zeng, Chao
    Yang, Yuan
    REMOTE SENSING LETTERS, 2017, 8 (06) : 528 - 536
  • [3] AUDITING REMOTE SENSING DATA USING GEOSPATIAL PROVENANCE
    Closa, Guillem
    Maso, Joan
    Pesquer, Lluis
    Pons, Xavier
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 4253 - 4256
  • [4] Small area estimation of crop yield using remote sensing satellite data
    Singh, R
    Semwal, DP
    Rai, A
    Chhikara, RS
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2002, 23 (01) : 49 - 56
  • [5] Reservoir storage curve estimation based on remote sensing data
    Peng, DZ
    Guo, SL
    Liu, P
    Liu, T
    JOURNAL OF HYDROLOGIC ENGINEERING, 2006, 11 (02) : 165 - 172
  • [6] An experimental global prediction system for rainfall-triggered landslides using satellite remote sensing and geospatial datasets
    Hong, Yang
    Adler, Robert F.
    Huffman, George
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (06): : 1671 - 1680
  • [7] Innovative Methods for Geospatial Data using Remote Sensing and GIS
    Bakirman, Tolga
    Arampatzis, George
    Photogrammetric Engineering and Remote Sensing, 2023, 89 (06):
  • [8] Innovative Methods for Geospatial Data using Remote Sensing and GIS
    不详
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2023, 89 (04):
  • [9] Estimation of Crop Coefficients Using Satellite Remote Sensing
    Singh, Ramesh K.
    Irmak, Ayse
    JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING, 2009, 135 (05) : 597 - 608
  • [10] WATER YIELD MODEL USING SCS CURVE NUMBERS
    WILLIAMS, JR
    LASEUR, WV
    JOURNAL OF THE HYDRAULICS DIVISION-ASCE, 1976, 102 (09): : 1241 - 1253