A Gauss-Seidel type inertial proximal alternating linearized minimization for a class of nonconvex optimization problems

被引:22
|
作者
Gao, Xue [1 ]
Cai, Xingju [1 ]
Han, Deren [2 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Key Lab NSLSCS Jiangsu Prov, Nanjing 210023, Peoples R China
[2] Beihang Univ, Beijing Adv Innovat Ctr Big Data & Brain Comp BDB, Sch Math & Syst Sci, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Gauss-Seidel; Inertial; Alternating proximal linearized minimization; Kurdyka-Lojasiewicz property; Nonconvex-nonsmooth optimization; CONVERGENCE; NONSMOOTH; ALGORITHM;
D O I
10.1007/s10898-019-00819-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we study a broad class of nonconvex and nonsmooth minimization problems, whose objective function is the sum of a smooth function of the entire variables and two nonsmooth functions of each variable. We adopt the framework of the proximal alternating linearized minimization (PALM), together with the inertial strategy to accelerate the convergence. Since the inertial step is performed once the x-subproblem/y-subproblem is updated, the algorithm is a Gauss-Seidel type inertial proximal alternating linearized minimization (GiPALM) algorithm. Under the assumption that the underlying functions satisfy the Kurdyka-Lojasiewicz (KL) property and some suitable conditions on the parameters, we prove that each bounded sequence generated by GiPALM globally converges to a critical point. We apply the algorithm to signal recovery, image denoising and nonnegative matrix factorization models, and compare it with PALM and the inertial proximal alternating linearized minimization.
引用
下载
收藏
页码:863 / 887
页数:25
相关论文
共 50 条
  • [21] An inertial proximal alternating direction method of multipliers for nonconvex optimization
    Chao, M. T.
    Zhang, Y.
    Jian, J. B.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2021, 98 (06) : 1199 - 1217
  • [22] An extended Gauss-Seidel method for a class of multi-valued complementarity problems
    Allevi, E.
    Gnudi, A.
    Konnov, I. V.
    OPTIMIZATION LETTERS, 2008, 2 (04) : 543 - 553
  • [23] An Inertial Tseng’s Type Proximal Algorithm for Nonsmooth and Nonconvex Optimization Problems
    Radu Ioan Boţ
    Ernö Robert Csetnek
    Journal of Optimization Theory and Applications, 2016, 171 : 600 - 616
  • [24] An Inertial Tseng's Type Proximal Algorithm for Nonsmooth and Nonconvex Optimization Problems
    Bot, Radu Ioan
    Csetnek, Ernoe Robert
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 171 (02) : 600 - 616
  • [25] A proximal alternating linearization method for nonconvex optimization problems
    Li, Dan
    Pang, Li-Ping
    Chen, Shuang
    OPTIMIZATION METHODS & SOFTWARE, 2014, 29 (04): : 771 - 785
  • [26] Proximal Linearized Minimization Algorithm for Nonsmooth Nonconvex Minimization Problems in Image Deblurring with Impulse Noise
    Shirong DENG
    Yuchao TANG
    Journal of Mathematical Research with Applications, 2024, 44 (01) : 122 - 142
  • [27] On the rate of convergence of the proximal alternating linearized minimization algorithm for convex problems
    Shefi, Ron
    Teboulle, Marc
    EURO JOURNAL ON COMPUTATIONAL OPTIMIZATION, 2016, 4 (01) : 27 - 46
  • [28] Convergent Nested Alternating Minimization Algorithms for Nonconvex Optimization Problems
    Gur, Eyal
    Sabach, Shoham
    Shtern, Shimrit
    MATHEMATICS OF OPERATIONS RESEARCH, 2023, 48 (01) : 53 - 77
  • [29] Iteratively Linearized Reweighted Alternating Direction Method of Multipliers for a Class of Nonconvex Problems
    Sun, Tao
    Jiang, Hao
    Cheng, Lizhi
    Zhu, Wei
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (20) : 5380 - 5391
  • [30] Coupling the logarithmic-quadratic proximal method and the block nonlinear Gauss-Seidel algorithm for linearly constrained convex minimization
    Auslender, A
    Teboulle, M
    Ben-Tiba, S
    ILL-POSED VARIATIONAL PROBLEMS AND REGULARIZATION TECHNIQUES, 1999, 477 : 35 - 47