Eichler-Shimura isomorphism for complex hyperbolic lattices

被引:1
|
作者
Kim, Inkang [1 ]
Zhang, Genkai [2 ]
机构
[1] KIAS, Sch Math, Heogiro 85, Seoul 130722, South Korea
[2] Gothenburg Univ, Chalmers Univ Technol & Math Sci, Math Sci, SE-41296 Gothenburg, Sweden
关键词
Complex hyperbolic lattice; First cohomology; Eichler-Shimura isomorphism; PROJECTIVE-STRUCTURES; LOCAL RIGIDITY; LIE-GROUPS; SPACE; COHOMOLOGY;
D O I
10.1016/j.geomphys.2017.08.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the cohomology group H-1(Gamma, p) of a discrete subgroup Gamma subset of G = SU(n, 1) and the symmetric tensor representation p on S-m(c(n+1)). We give an elementary proof of the Eichler-Shimura isomorphism that harmonic forms H-1(Gamma\ G/K, p) are (0, 1)-forms for the automorphic holomorphic bundle induced by the representation S-m(C-n) of K. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:452 / 460
页数:9
相关论文
共 50 条
  • [21] Complex hyperbolic lattices
    Parker, John R.
    DISCRETE GROUPS AND GEOMETRIC STRUCTURES, 2009, 501 : 1 - 42
  • [22] Eichler–Shimura theory for mock modular forms
    Kathrin Bringmann
    Pavel Guerzhoy
    Zachary Kent
    Ken Ono
    Mathematische Annalen, 2013, 355 : 1085 - 1121
  • [23] On Shimura, Shintani and Eichler-Zagier correspondences
    Manickam, M
    Ramakrishnan, B
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (06) : 2601 - 2617
  • [24] The Eichler–Shimura cohomology theorem for Jacobi forms
    Dohoon Choi
    Subong Lim
    Monatshefte für Mathematik, 2017, 182 : 271 - 288
  • [25] On representations of complex hyperbolic lattices
    Wang, M
    MATHEMATICAL RESEARCH LETTERS, 1999, 6 (01) : 99 - 105
  • [26] Complex hyperbolic orbifolds and hybrid lattices
    Falbel, Elisha
    Pasquinelli, Irene
    GEOMETRIAE DEDICATA, 2023, 217 (02)
  • [27] Complex hyperbolic orbifolds and hybrid lattices
    Elisha Falbel
    Irene Pasquinelli
    Geometriae Dedicata, 2023, 217
  • [28] Zeta-polynomials, Hilbert polynomials, and the Eichler–Shimura identities
    Marie Jameson
    Research in the Mathematical Sciences, 2019, 6
  • [29] Subgroups of hyperbolic groups, finiteness properties and complex hyperbolic lattices
    Isenrich, Claudio Llosa
    Py, Pierre
    INVENTIONES MATHEMATICAE, 2023, 235 (1) : 233 - 254
  • [30] Subgroups of hyperbolic groups, finiteness properties and complex hyperbolic lattices
    Claudio Llosa Isenrich
    Pierre Py
    Inventiones mathematicae, 2024, 235 : 233 - 254