Strongly Gorenstein-projective Quiver Representations

被引:1
|
作者
Ju, Tengxia [1 ]
Luo, Xiu-Hua [1 ]
机构
[1] Nantong Univ, Sch Sci, Dept Math, Nantong 226019, Jiangsu, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2021年 / 25卷 / 03期
基金
美国国家科学基金会;
关键词
quiver representations; separated monic representations; (strongly) Gorenstein-projective modules; upper triangular matrix algebra; MONOMORPHISM CATEGORIES; MODULES; FLAT; HOMOTOPY;
D O I
10.11650/tjm/201103
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a field k, a finite-dimensional k -algebra A, and a finite acyclic quiver Q, let AQ be the path algebra of Q over A. Then the category of representations of Q over A is equivalent to the category of AQ-modules. The main result of this paper explicitly describes the strongly Gorenstein-projective AQ-modules via the separated monic representations with a local strongly Gorenstein-property. As an application, a necessary and sufficient condition is given on when each Gorenstein-projective AQ-module is strongly Gorenstein-projective. As a direct result, for an integer t >= 2, let A = k[x]/< x(t)>, each Gorenstein-projective AQ-module is strongly Gorensteinprojective if and only if A = k[x]/< x(2)>.
引用
收藏
页码:449 / 461
页数:13
相关论文
共 50 条
  • [41] Principal parts bundles on projective spaces and quiver representations
    Re, Riccardo
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2012, 61 (02) : 179 - 198
  • [42] When Every Gorenstein Projective (Resp. Flat) Module is Strongly Gorenstein Projective (Resp. Flat)
    Mahdou, Najib
    Tamekkante, Mohammed
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2010, 1 (01): : 15 - 25
  • [43] Universal deformation rings of finitely generated Gorenstein-projective modules over finite dimensional algebras
    Bekkert, Viktor
    Giraldo, Hernan
    Velez-Marulanda, Jose A.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (05)
  • [44] STRONGLY n-GORENSTEIN PROJECTIVE, INJECTIVE, AND FLAT MODULES
    Mahdou, N.
    Tamekkante, M.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2018, 87 (01): : 35 - 53
  • [45] (n, m)-Strongly Gorenstein Projective, Injective and Flat Modules
    Xing, Jianmin
    BIOTECHNOLOGY, CHEMICAL AND MATERIALS ENGINEERING, PTS 1-3, 2012, 393-395 : 1076 - 1079
  • [46] WEIGHTED PROJECTIVE LINES AS FINE MODULI SPACES OF QUIVER REPRESENTATIONS
    Abdelgadir, Tarig
    Ueda, Kazushi
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (02) : 636 - 649
  • [47] n-STRONGLY GORENSTEIN PROJECTIVE, INJECTIVE AND FLAT MODULES
    Zhao, Guoqiang
    Huang, Zhaoyong
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (08) : 3044 - 3062
  • [48] RINGS OVER WHICH ALL MODULES ARE STRONGLY GORENSTEIN PROJECTIVE
    Bennis, Driss
    Mahdou, Najib
    Ouarghi, Khalid
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2010, 40 (03) : 749 - 759
  • [49] PROJECTIVE TORIC VARIETIES AS FINE MODULI SPACES OF QUIVER REPRESENTATIONS
    Craw, Alastair
    Smith, Gregory G.
    AMERICAN JOURNAL OF MATHEMATICS, 2008, 130 (06) : 1509 - 1534
  • [50] Gorenstein AC-projective and AC-injective representations of quivers
    Wu, Dejun
    Zhou, Hui
    Wang, Yongduo
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2025, 24 (05)