Strongly Gorenstein-projective Quiver Representations

被引:1
|
作者
Ju, Tengxia [1 ]
Luo, Xiu-Hua [1 ]
机构
[1] Nantong Univ, Sch Sci, Dept Math, Nantong 226019, Jiangsu, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2021年 / 25卷 / 03期
基金
美国国家科学基金会;
关键词
quiver representations; separated monic representations; (strongly) Gorenstein-projective modules; upper triangular matrix algebra; MONOMORPHISM CATEGORIES; MODULES; FLAT; HOMOTOPY;
D O I
10.11650/tjm/201103
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a field k, a finite-dimensional k -algebra A, and a finite acyclic quiver Q, let AQ be the path algebra of Q over A. Then the category of representations of Q over A is equivalent to the category of AQ-modules. The main result of this paper explicitly describes the strongly Gorenstein-projective AQ-modules via the separated monic representations with a local strongly Gorenstein-property. As an application, a necessary and sufficient condition is given on when each Gorenstein-projective AQ-module is strongly Gorenstein-projective. As a direct result, for an integer t >= 2, let A = k[x]/< x(t)>, each Gorenstein-projective AQ-module is strongly Gorensteinprojective if and only if A = k[x]/< x(2)>.
引用
收藏
页码:449 / 461
页数:13
相关论文
共 50 条