Strongly Gorenstein-projective Quiver Representations

被引:1
|
作者
Ju, Tengxia [1 ]
Luo, Xiu-Hua [1 ]
机构
[1] Nantong Univ, Sch Sci, Dept Math, Nantong 226019, Jiangsu, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2021年 / 25卷 / 03期
基金
美国国家科学基金会;
关键词
quiver representations; separated monic representations; (strongly) Gorenstein-projective modules; upper triangular matrix algebra; MONOMORPHISM CATEGORIES; MODULES; FLAT; HOMOTOPY;
D O I
10.11650/tjm/201103
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a field k, a finite-dimensional k -algebra A, and a finite acyclic quiver Q, let AQ be the path algebra of Q over A. Then the category of representations of Q over A is equivalent to the category of AQ-modules. The main result of this paper explicitly describes the strongly Gorenstein-projective AQ-modules via the separated monic representations with a local strongly Gorenstein-property. As an application, a necessary and sufficient condition is given on when each Gorenstein-projective AQ-module is strongly Gorenstein-projective. As a direct result, for an integer t >= 2, let A = k[x]/< x(t)>, each Gorenstein-projective AQ-module is strongly Gorensteinprojective if and only if A = k[x]/< x(2)>.
引用
收藏
页码:449 / 461
页数:13
相关论文
共 50 条
  • [1] MONIC REPRESENTATIONS AND GORENSTEIN-PROJECTIVE MODULES
    Luo, Xiu-Hua
    Zhang, Pu
    PACIFIC JOURNAL OF MATHEMATICS, 2013, 264 (01) : 163 - 194
  • [2] Exact Morphism Category and Gorenstein-projective Representations
    Luo, Xiu-Hua
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2015, 58 (04): : 824 - 834
  • [3] Separated monic representations I: Gorenstein-projective modules
    Luo, Xiu-Hua
    Zhang, Pu
    JOURNAL OF ALGEBRA, 2017, 479 : 1 - 34
  • [4] Strongly Gorenstein-projective modules over rings of Morita contexts
    Asefa, Dadi
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2024, 65 (01): : 43 - 57
  • [5] Gorenstein-projective and semi-Gorenstein-projective modules
    Ringel, Claus Michael
    Zhang, Pu
    ALGEBRA & NUMBER THEORY, 2020, 14 (01) : 1 - 36
  • [6] Strongly Gorenstein-projective modules over rings of Morita contexts
    Dadi Asefa
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2024, 65 : 43 - 57
  • [7] A construction of Gorenstein-projective modules
    Li, Zhi-Wei
    Zhang, Pu
    JOURNAL OF ALGEBRA, 2010, 323 (06) : 1802 - 1812
  • [8] Gorenstein-projective and semi-Gorenstein-projective modules. II
    Ringel, Claus Michael
    Zhang, Pu
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (06)
  • [9] Gorenstein-projective modules and symmetric recollements
    Zhang, Pu
    JOURNAL OF ALGEBRA, 2013, 388 : 65 - 80
  • [10] A short note on deformations of (strongly) Gorenstein-projective modules over the dual numbers
    Velez-Marulanda, Jose A.
    Suarez, Hector
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2024, 18 (02): : 1692 - 1699