Positive solutions for fractional differential systems with nonlocal Riemann-Liouville fractional integral boundary conditions

被引:5
|
作者
Neamprem, Khomsan [1 ]
Muensawat, Thanadon [1 ]
Ntouyas, Sotiris K. [2 ,3 ]
Tariboon, Jessada [1 ]
机构
[1] King Mongkuts Univ Technol North Bangkok, Fac Sci Appl, Dept Math, Nonlinear Dynam Anal Res Ctr, Bangkok 10800, Thailand
[2] Univ Ioannina, Dept Math, GR-45110 Ioannina, Greece
[3] King Abdulaziz Univ, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, Fac Sci, POB 80203, Jeddah 21589, Saudi Arabia
关键词
Fractional differential systems; Nonlocal boundary conditions; Riemann-Liouville fractional integral conditions; Positive solutions; Fixed point theorems; COUPLED SYSTEM; EQUATIONS; EXISTENCE;
D O I
10.1007/s11117-016-0433-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the positive solutions of fractional differential system with coupled nonlocal Riemann-Liouville fractional integral boundary conditions. Our analysis relies on Leggett-Williams and Guo-Krasnoselskii's fixed point theorems. Two examples are worked out to illustrate our main results.
引用
收藏
页码:825 / 845
页数:21
相关论文
共 50 条
  • [41] Positive solutions for some Riemann-Liouville fractional boundary value problems
    Bachar, Imed
    Maagli, Habib
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (07): : 5093 - 5106
  • [42] On Solutions of Fractional Integrodifferential Systems Involving ψ-Caputo Derivative and ψ-Riemann-Liouville Fractional Integral
    Boulares, Hamid
    Moumen, Abdelkader
    Fernane, Khaireddine
    Alzabut, Jehad
    Saber, Hicham
    Alraqad, Tariq
    Benaissa, Mhamed
    MATHEMATICS, 2023, 11 (06)
  • [43] Positive solutions for a fractional configuration of the Riemann-Liouville semilinear differential equation
    Azzaoui, Bouchra
    Tellab, Brahim
    Zennir, Khaled
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022,
  • [44] Solvability of a generalized Ψ-Riemann-Liouville fractional BVP under nonlocal boundary conditions
    Haddouchi, Faouzi
    Samei, Mohammad Esmael
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 219 : 355 - 377
  • [45] Monotone Iterative Scheme for System of Riemann-Liouville Fractional Differential Equations with Integral Boundary Conditions
    Nanware, J. A.
    Dhaigude, D. B.
    MATHEMATICAL MODELLING AND SCIENTIFIC COMPUTATION, 2012, 283 : 395 - 402
  • [46] Positive Solutions for a Semipositone Singular Riemann-Liouville Fractional Differential Problem
    Agarwal, Ravi P.
    Luca, Rodica
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2019, 20 (7-8) : 823 - 831
  • [47] The Solutions of Some Riemann-Liouville Fractional Integral Equations
    Kaewnimit, Karuna
    Wannalookkhee, Fongchan
    Nonlaopon, Kamsing
    Orankitjaroen, Somsak
    FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [48] Existence of solutions for Riemann-Liouville fractional differential equations with nonlocal Erdélyi-Kober integral boundary conditions on the half-line
    Phollakrit Thiramanus
    Sotiris K Ntouyas
    Jessada Tariboon
    Boundary Value Problems, 2015
  • [49] Nonlinear sequential Riemann-Liouville and Caputo fractional differential equations with generalized fractional integral conditions
    Promsakon, Chanon
    Phuangthong, Nawapol
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [50] THREE POSITIVE SOLUTIONS FOR BOUNDARY VALUE PROBLEM FOR DIFFERENTIAL EQUATION WITH RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE
    Shen, Chunfang
    Zhou, Hui
    Yang, Liu
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2018, 8 (04): : 1227 - 1238