V-MOF derived porous V2O5 nanoplates for high performance aqueous zincion battery

被引:117
|
作者
Ding, Youcai [1 ,2 ]
Peng, Yuqi [1 ,2 ]
Chen, Wenyong [1 ,2 ]
Niu, Yunjuan [1 ,2 ]
Wu, Shougang [1 ,2 ]
Zhang, Xianxi [3 ]
Hu, Linhua [1 ]
机构
[1] Chinese Acad Sci, Inst Appl Technol, Hefei Inst Phys Sci, Key Lab Photovolta & Energy Conservat Mat, 2221 Changjiangxi Rd, Hefei 230088, Anhui, Peoples R China
[2] Univ Sci & Technol China, 96 Jinzhai Rd, Hefei 230026, Anhui, Peoples R China
[3] Liaocheng Univ, Shandong Prov Key Lab, Sch Chem & Chem Engn, Collaborat Innovat Ctr Chem Energy Storage & Nove, Liaocheng 252000, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Aqueous zinc ion battery; V-MOF; V2O5; nanoplates; High capacity; ION BATTERY; ELECTRODE MATERIALS; CATHODE MATERIAL; STORAGE;
D O I
10.1016/j.apsusc.2019.07.026
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rechargeable aqueous zinc-ion battery is a promising energy storage device because of its low cost and high safety. However, they are still in their infancy due to the limited choice of cathodes with high capacity and satisfactory cycling performance. In this work, porous V2O5 materials were obtained by pyrolysis of vanadium-MOF and adopted as intercalation cathode for aqueous zinc-ion batteries. V2O5 purchased commercially as a control, the effects of specific surface area, pore size distribution and mixed valence of electrodes on the performance of batteries were studied. The novel cathode delivers high capacities of 300 mA h g(-1) compared to 60 mAh g(-1) for C-V2O5 at current density of 100 mA g(-1). The energy density of this Zn ion battery is about 230 Wh kg(-1), which is much higher than commercial lead acid batteries. The capacity of P-V2O5 electrode retains 120 mA h g(-1) even at 2000 mA g(-1), which is much higher than that of C-V2O5. Moreover, the structure of V2O5 nanoplates and their composites with carbon materials can improve the cyclic stability.
引用
收藏
页码:368 / 374
页数:7
相关论文
共 50 条
  • [41] Dehydroaromatization with V2O5
    Karki, Megha
    Araujo, Hugo C.
    Magolan, Jakob
    SYNLETT, 2013, 24 (13) : 1675 - 1678
  • [42] HYDRATES OF V2O5
    THEOBALD, F
    BULLETIN DE LA SOCIETE CHIMIQUE DE FRANCE PARTIE I-PHYSICOCHIMIE DES SYSTEMES LIQUIDES ELECTROCHIMIE CATALYSE GENIE CHIMIQUE, 1975, (7-8): : 1607 - 1612
  • [43] Progress on V2O5 Cathodes for Multivalent Aqueous Batteries
    Karapidakis, Emmanuel
    Vernardou, Dimitra
    MATERIALS, 2021, 14 (09)
  • [44] V2O5 - Jellies
    Rabinerson, A
    KOLLOID-ZEITSCHRIFT, 1934, 68 (03): : 305 - 316
  • [45] Capacitive performance of amorphous V2O5 for supercapacitor
    Huang Jian-Hua
    Lai Qiong-Yu
    Song Jian-Mei
    Chen Lian-Mei
    Ji Xiao-Yang
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2007, 23 (02) : 237 - 242
  • [46] Fabrication of a surface micromachined uncooled microbolometer based on the V2O5/V/V2O5 sandwich structure
    Han, YH
    Choi, IH
    Son, CS
    Kim, KT
    Anh, NC
    Shin, HJ
    Moon, S
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2004, 45 (06) : 1655 - 1658
  • [47] Porous V2O5 microspheres: a high-capacity cathode material for aqueous zinc-ion batteries
    Hu, Ping
    Zhu, Ting
    Ma, Jingxuan
    Cai, Congcong
    Hu, Guangwu
    Wang, Xuanpeng
    Liu, Ziang
    Zhou, Liang
    Mai, Liqiang
    CHEMICAL COMMUNICATIONS, 2019, 55 (58) : 8486 - 8489
  • [48] METHANOL ON SUPPORTED V2O5 - EFFECTS OF NATURE SUPPORT AND V2O5 CONCENTRATION
    TATIBOUET, JM
    BULLETIN DE LA SOCIETE CHIMIQUE DE FRANCE, 1986, (01): : 18 - 21
  • [49] Supercapacitor electrode of hollow spherical V2O5 with a high pseudocapacitance in aqueous solution
    Yang, Jie
    Lan, Tongbin
    Liu, Jingdong
    Song, Yanfang
    Wei, Mingdeng
    ELECTROCHIMICA ACTA, 2013, 105 : 489 - 495
  • [50] High performance supercapacitor based on carbon coated V2O5 nanorods
    Saravanakumar, Balakrishnan
    Purushothaman, Kamatchi Kamaraj
    Muralidharan, Gopalan
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2015, 758 : 111 - 116