V-MOF derived porous V2O5 nanoplates for high performance aqueous zincion battery

被引:117
|
作者
Ding, Youcai [1 ,2 ]
Peng, Yuqi [1 ,2 ]
Chen, Wenyong [1 ,2 ]
Niu, Yunjuan [1 ,2 ]
Wu, Shougang [1 ,2 ]
Zhang, Xianxi [3 ]
Hu, Linhua [1 ]
机构
[1] Chinese Acad Sci, Inst Appl Technol, Hefei Inst Phys Sci, Key Lab Photovolta & Energy Conservat Mat, 2221 Changjiangxi Rd, Hefei 230088, Anhui, Peoples R China
[2] Univ Sci & Technol China, 96 Jinzhai Rd, Hefei 230026, Anhui, Peoples R China
[3] Liaocheng Univ, Shandong Prov Key Lab, Sch Chem & Chem Engn, Collaborat Innovat Ctr Chem Energy Storage & Nove, Liaocheng 252000, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Aqueous zinc ion battery; V-MOF; V2O5; nanoplates; High capacity; ION BATTERY; ELECTRODE MATERIALS; CATHODE MATERIAL; STORAGE;
D O I
10.1016/j.apsusc.2019.07.026
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rechargeable aqueous zinc-ion battery is a promising energy storage device because of its low cost and high safety. However, they are still in their infancy due to the limited choice of cathodes with high capacity and satisfactory cycling performance. In this work, porous V2O5 materials were obtained by pyrolysis of vanadium-MOF and adopted as intercalation cathode for aqueous zinc-ion batteries. V2O5 purchased commercially as a control, the effects of specific surface area, pore size distribution and mixed valence of electrodes on the performance of batteries were studied. The novel cathode delivers high capacities of 300 mA h g(-1) compared to 60 mAh g(-1) for C-V2O5 at current density of 100 mA g(-1). The energy density of this Zn ion battery is about 230 Wh kg(-1), which is much higher than commercial lead acid batteries. The capacity of P-V2O5 electrode retains 120 mA h g(-1) even at 2000 mA g(-1), which is much higher than that of C-V2O5. Moreover, the structure of V2O5 nanoplates and their composites with carbon materials can improve the cyclic stability.
引用
收藏
页码:368 / 374
页数:7
相关论文
共 50 条
  • [21] A High Power Rechargeable Nonaqueous Multivalent Zn/V2O5 Battery
    Senguttuvan, Premkumar
    Han, Sang-Don
    Kim, Soojeong
    Lipson, Albert L.
    Tepavcevic, Sanja
    Fister, Timothy T.
    Bloom, Ira D.
    Burrell, Anthony K.
    Johnson, Christopher S.
    ADVANCED ENERGY MATERIALS, 2016, 6 (24)
  • [22] Reduction of the (001) surface of γ-V2O5 compared to α-V2O5
    Ganduglia-Pirovano, MV
    Sauer, J
    JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (01): : 374 - 380
  • [23] Using and recycling V2O5 as high performance anode materials for sustainable lithium ion battery
    Du, Lingyu
    Lin, Huijuan
    Ma, Zhongyuan
    Wang, Qingqing
    Li, Desheng
    Shen, Yu
    Zhang, Weina
    Rui, Kun
    Zhu, Jixin
    Huang, Wei
    JOURNAL OF POWER SOURCES, 2019, 424 : 158 - 164
  • [24] Harnessing oxygen vacancy in V2O5 as high performing aqueous zinc-ion battery cathode
    Qi, Zichen
    Xiong, Ting
    Chen, Tao
    Shi, Wen
    Zhang, Mingchang
    Ang, Zhi Wei Javier
    Fan, Huiqing
    Xiao, Hong
    Lee, Wee Siang Vincent
    Xue, Junmin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 870
  • [25] EPR study of RLi2O V2O5, RNa2O V2O5, RCaO V2O5, and RBaO V2O5 modified vanadate glass systems
    McKnight, J. M.
    Whitmore, K. A.
    Bunton, P. H.
    Baker, D. B.
    Vennerberg, D. C.
    Feller, S. A.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2010, 356 (43) : 2268 - 2272
  • [26] A multi-chromic supercapacitor of high coloration efficiency integrating a MOF-derived V2O5 electrode
    Dewan, Anweshi
    Narayanan, Remya
    Thotiyl, Musthafa Ottakam
    NANOSCALE, 2022, 14 (46) : 17372 - 17384
  • [27] Porous V2O5 nanorods/reduced graphene oxide composites for high performance symmetric supercapacitors
    Liu, Huanji
    Zhu, Wenliang
    Long, Duanfu
    Zhu, Jiliang
    Pezzotti, Giuseppe
    APPLIED SURFACE SCIENCE, 2019, 478 : 383 - 392
  • [28] Geometric and electronic structure of γ-V2O5:: Comparison between α-V2O5 and γ-V2O5 -: art. no. 155114
    Willinger, M
    Pinna, N
    Su, DS
    Schlögl, R
    PHYSICAL REVIEW B, 2004, 69 (15) : 155114 - 1
  • [29] Brillouin scattering of V2O5 and Sn-intercalated V2O5
    Reed, Bryan W.
    Huynh, Vicky
    Tran, Catherine
    Koski, Kristie J.
    PHYSICAL REVIEW B, 2020, 102 (05)
  • [30] The characterization of nanocrystalline V2O5 and mixed V2O5/Ce oxide
    Orel, ZC
    Kuscer, D
    Kosec, M
    Turkovic, A
    SURFACE AND COLLOID SCIENCE, 2004, 128 : 120 - 125