A random forest model for predicting the crystallisability of organic molecules

被引:21
|
作者
Bhardwaj, Rajni M. [1 ]
Johnston, Andrea [1 ]
Johnston, Blair F. [1 ]
Florence, Alastair J. [1 ]
机构
[1] Univ Strathclyde, Strathclyde Inst Pharm & Biomed Sci, Glasgow G4 0RE, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
PROTEIN CRYSTALLIZATION PROPENSITY; CLASSIFICATION; QSAR; PURIFICATION; SCALE;
D O I
10.1039/c4ce02403f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A random forest model has for the first time enabled the prediction of the crystallisability (crystals vs. no crystals) of organic molecules with similar to 70% accuracy. The predictive model is based on calculated molecular descriptors and published experimental crystallisation propensities of a library of substituted acylanilides.
引用
收藏
页码:4272 / 4275
页数:4
相关论文
共 50 条
  • [1] A random forest model for predicting crystal packing of olanzapine solvates
    Bhardwaj, Rajni M.
    Reutzel-Edens, Susan M.
    Johnston, Blair F.
    Florence, Alastair J.
    CRYSTENGCOMM, 2018, 20 (28) : 3947 - 3950
  • [2] A Random Forest Model for Predicting Allosteric and Functional Sites on Proteins
    Chen, Ava S-Y.
    Westwood, Nicholas J.
    Brear, Paul
    Rogers, Graeme W.
    Mavridis, Lazaros
    Mitchell, John B. O.
    MOLECULAR INFORMATICS, 2016, 35 (3-4) : 125 - 135
  • [3] Random forest model for predicting kinetic parameters of biomass devolatilization
    Xing J.-K.
    Wang H.-O.
    Luo K.
    Bai Y.
    Fan J.-R.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2019, 53 (03): : 605 - 612
  • [4] PREDICTING SOIL HEAVY METAL BASED ON RANDOM FOREST MODEL
    Ma, Weibo
    Tan, Kun
    Du, Peijun
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 4331 - 4334
  • [5] A noncongeneric model for predicting toxicity of organic molecules to Vibrio fischeri
    Devillers, J
    Domine, D
    SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 1999, 10 (01) : 61 - 70
  • [6] Optimized random forest model for predicting flexural properties of sustainable composites
    Mahajan, Aditi
    Gairola, Sandeep
    Singh, Inderdeep
    Arora, Navneet
    POLYMER COMPOSITES, 2024, 45 (12) : 10700 - 10710
  • [7] Exploratory Predicting Protein Folding Model with Random Forest and Hybrid Features
    Zhao, Xuewei
    Zou, Quan
    Liu, Bin
    Liu, Xiangrong
    CURRENT PROTEOMICS, 2014, 11 (04) : 289 - 299
  • [8] Research on Predicting the Turnover of Graduates Using an Enhanced Random Forest Model
    Liu, Min
    Yang, Bo
    Song, Yuhang
    BEHAVIORAL SCIENCES, 2024, 14 (07)
  • [9] Application of Random Forest for Identification of an Appropriate Model for Predicting Meteorological Drought
    Hussain, Anwar
    Niaz, Rizwan
    Al-Rezami, A. Y.
    Mohamed Omer, Adam
    S. Al-Duais, Fuad
    M. A. Almazah, Mohammed
    ADVANCES IN METEOROLOGY, 2025, 2025 (01)
  • [10] Prediction of Chemical Bond Dissociation Energies of Small Organic Molecules Based on Random Forest
    Luan, Yue
    Kong, Dingling
    Guo, Lili
    Zhang, Qingyou
    Zhou, Yanmei
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2025, 46 (03):