A Random Forest Model for Predicting Allosteric and Functional Sites on Proteins

被引:26
|
作者
Chen, Ava S-Y. [1 ,2 ]
Westwood, Nicholas J. [1 ,2 ]
Brear, Paul [1 ,2 ]
Rogers, Graeme W. [1 ,2 ]
Mavridis, Lazaros [3 ]
Mitchell, John B. O. [1 ,2 ]
机构
[1] Univ St Andrews, Biomed Sci Res Complex, Purdie Bldg,North Haugh, St Andrews KY16 9ST, Fife, Scotland
[2] Univ St Andrews, EaStCHEM Sch Chem, Purdie Bldg,North Haugh, St Andrews KY16 9ST, Fife, Scotland
[3] Univ London, Sch Biol & Chem Sci, London E1 4NS, England
关键词
Random Forest; Machine Learning; Cheminformatics; Drug Design; Allosteric site; BINDING CASCADES; CLASSIFICATION; PATHWAYS; DYNAMICS; AFFINITY; DATABASE; DOMAIN;
D O I
10.1002/minf.201500108
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
We created a computational method to identify allosteric sites using a machine learning method trained and tested on protein structures containing bound ligand molecules. The Random Forest machine learning approach was adopted to build our three-way predictive model. Based on descriptors collated for each ligand and binding site, the classification model allows us to assign protein cavities as allosteric, regular or orthosteric, and hence to identify allosteric sites. 43 structural descriptors per complex were derived and were used to characterize individual protein-ligand binding sites belonging to the three classes, allosteric, regular and orthosteric. We carried out a separate validation on a further unseen set of protein structures containing the ligand 2-(N-cyclohexylamino) ethane sulfonic acid (CHES).
引用
收藏
页码:125 / 135
页数:11
相关论文
共 50 条
  • [1] A random forest model for predicting exosomal proteins using evolutionary information and motifs
    Arora, Akanksha
    Patiyal, Sumeet
    Sharma, Neelam
    Devi, Naorem Leimarembi
    Kaur, Dashleen
    Raghava, Gajendra P. S.
    [J]. PROTEOMICS, 2024, 24 (06)
  • [2] Predicting types of occupational accidents at construction sites in Korea using random forest model
    Kang, Kyungsu
    Ryu, Hanguk
    [J]. SAFETY SCIENCE, 2019, 120 : 226 - 236
  • [3] Predicting functional sites in disordered proteins - implications in disease
    Meszaros, Balint
    Simon, Istvan
    Dosztanyi, Zsuzsanna
    [J]. PROCEEDINGS IWBBIO 2014: INTERNATIONAL WORK-CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING, VOLS 1 AND 2, 2014, : 1061 - 1061
  • [4] Allosite: a method for predicting allosteric sites
    Huang, Wenkang
    Lu, Shaoyong
    Huang, Zhimin
    Liu, Xinyi
    Mou, Linkai
    Luo, Yu
    Zhao, Yanlong
    Liu, Yaqin
    Chen, Zhongjie
    Hou, Tingjun
    Zhang, Jian
    [J]. BIOINFORMATICS, 2013, 29 (18) : 2357 - 2359
  • [5] Predicting the functional outcomes of anti-LGI1 encephalitis using a random forest model
    Li, Gongfei
    Liu, Xiao
    Wang, Minghui
    Yu, Tingting
    Ren, Jiechuan
    Wang, Qun
    [J]. ACTA NEUROLOGICA SCANDINAVICA, 2022, 146 (02): : 137 - 143
  • [6] A random forest model for predicting the crystallisability of organic molecules
    Bhardwaj, Rajni M.
    Johnston, Andrea
    Johnston, Blair F.
    Florence, Alastair J.
    [J]. CRYSTENGCOMM, 2015, 17 (23) : 4272 - 4275
  • [7] Characteristics of Allosteric Proteins, Sites, and Modulators
    He, Xinheng
    Ni, Duan
    Lu, Shaoyong
    Zhang, Jian
    [J]. PROTEIN ALLOSTERY IN DRUG DISCOVERY, 2019, 1163 : 107 - 139
  • [8] Finding Hidden Allosteric Sites in Proteins
    Bowman, Gregory R.
    Geissler, Phillip L.
    Marqusee, Susan
    [J]. BIOPHYSICAL JOURNAL, 2014, 106 (02) : 647A - 647A
  • [9] Predicting host tropism of influenza A virus proteins using random forest
    Eng, Christine L. P.
    Tong, Joo Chuan
    Tan, Tin Wee
    [J]. BMC MEDICAL GENOMICS, 2014, 7
  • [10] Predicting host tropism of influenza A virus proteins using random forest
    Christine LP Eng
    Joo Chuan Tong
    Tin Wee Tan
    [J]. BMC Medical Genomics, 7