A random forest model for predicting the crystallisability of organic molecules

被引:21
|
作者
Bhardwaj, Rajni M. [1 ]
Johnston, Andrea [1 ]
Johnston, Blair F. [1 ]
Florence, Alastair J. [1 ]
机构
[1] Univ Strathclyde, Strathclyde Inst Pharm & Biomed Sci, Glasgow G4 0RE, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
PROTEIN CRYSTALLIZATION PROPENSITY; CLASSIFICATION; QSAR; PURIFICATION; SCALE;
D O I
10.1039/c4ce02403f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A random forest model has for the first time enabled the prediction of the crystallisability (crystals vs. no crystals) of organic molecules with similar to 70% accuracy. The predictive model is based on calculated molecular descriptors and published experimental crystallisation propensities of a library of substituted acylanilides.
引用
收藏
页码:4272 / 4275
页数:4
相关论文
共 50 条
  • [21] A random forest based computational model for predicting novel lncRNA-disease associations
    Dengju Yao
    Xiaojuan Zhan
    Xiaorong Zhan
    Chee Keong Kwoh
    Peng Li
    Jinke Wang
    BMC Bioinformatics, 21
  • [22] A Random Forest Regression Model for Predicting the Movement of Horseshoe Crabs in Long Island Sound
    Senbel, Samah
    Kasinak, Jo-Marie Elisha
    Mattei, Jennifer
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2021, PT IV, 2021, 12952 : 107 - 119
  • [23] PREDICTING THE OUTCOMES OF IN VITRO FERTILIZATION PROGRAMS USING A RANDOM FOREST MACHINE LEARNING MODEL
    Vladimirsky, G. M.
    Zhuravleva, M. A.
    Dashieva, A. E.
    Korneeva, I. E.
    Nazarenko, T. A.
    BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY, 2023, (06): : 64 - 70
  • [24] Predicting Daily Urban Fine Particulate Matter Concentrations Using a Random Forest Model
    Brokamp, Cole
    Jandarov, Roman
    Hossain, Monir
    Ryan, Patrick
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2018, 52 (07) : 4173 - 4179
  • [25] Random forest prediction model for the soil organic matter with optimized spectral inputs
    Zhang X.
    Meng X.
    Tang H.
    Liu H.
    Zhang X.
    Liu Q.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2023, 39 (02): : 90 - 99
  • [26] Distributed Random Forest for Predicting Forest Wildfires Based on Weather Data
    Damasevisius, Robertas
    Maskeliunas, Rytis
    ADVANCED NETWORK TECHNOLOGIES AND INTELLIGENT COMPUTING, ANTIC 2023, PT II, 2024, 2091 : 305 - 320
  • [27] Lasing and random lasing based on organic molecules
    Sznitko, Lech
    Cyprych, Konrad
    Szukalski, Adam
    Miniewicz, Andrzej
    Rau, Ileana
    Kajzar, Francois
    Mysliwiec, Jaroslaw
    OPTICS AND PHOTONICS FOR COUNTERTERRORISM, CRIME FIGHTING AND DEFENCE IX; AND OPTICAL MATERIALS AND BIOMATERIALS IN SECURITY AND DEFENCE SYSTEMS TECHNOLOGY X, 2013, 8901
  • [28] A random forest approach for predicting coal spontaneous combustion
    Lei, Changkui
    Deng, Jun
    Cao, Kai
    Ma, Li
    Xiao, Yang
    Ren, Lifeng
    FUEL, 2018, 223 : 63 - 73
  • [29] Predicting Bank Financial Failures using Random Forest
    Rustam, Zuherman
    Saragih, Glori Stephani
    2018 INTERNATIONAL WORKSHOP ON BIG DATA AND INFORMATION SECURITY (IWBIS), 2018, : 81 - 86
  • [30] Predicting degradation of organic molecules in cementitious media
    Bagaria, F.
    Riba, O.
    Albrecht, A.
    Robinet, J-C
    Made, B.
    Roman-Ross, G.
    PROGRESS IN NUCLEAR ENERGY, 2021, 140