Estimation of reliability with semi-parametric modeling of degradation

被引:2
|
作者
Bhuyan, Prajamitra [1 ]
Sengupta, Debasis [1 ]
机构
[1] Indian Stat Inst, Appl Stat Unit, Kolkata 700108, India
关键词
Accelerated failure time; Crack propagation; Kernel function; Monotonic spline; Random effects; SEMOR; Shape invariant model; CONSISTENCY;
D O I
10.1016/j.csda.2017.06.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In many real life scenarios, stress accumulates over time and the system fails as soon as the accumulated stress or degradation equals or exceeds a critical threshold. For some devices, it is possible to obtain measurements of degradation over time, and these measurements may contain useful information about product reliability. In this paper, we propose a semi parametric random effect (frailty) model for degradation path, and a method of estimating this path as well as the reliability. Consistency of the estimator under general conditions is established. Simulation results show superiority of the performance of the proposed method over a parametric competitor. The method is illustrated through the analysis of a real data set. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:172 / 185
页数:14
相关论文
共 50 条
  • [21] Generalized linear models in software reliability: parametric & semi-parametric approaches
    IMAG - Lab de Modelisation et Calcul, Grenoble, Germany
    IEEE Trans Reliab, 3 (463-470):
  • [22] Generalized linear models in software reliability: Parametric & semi-parametric approaches
    ElAroui, MA
    Lavergne, C
    IEEE TRANSACTIONS ON RELIABILITY, 1996, 45 (03) : 463 - 470
  • [23] Modeling zero response data from willingness to pay surveys - A semi-parametric estimation
    Yoo, SH
    Kim, TY
    Lee, JK
    ECONOMICS LETTERS, 2001, 71 (02) : 191 - 196
  • [24] Birnbaum-Saunders Semi-Parametric Additive Modeling: Estimation, Smoothing, Diagnostics, and Application
    Carcamo, Esteban
    Marchant, Carolina
    Ibacache-Pulgar, German
    Leiva, Victor
    REVSTAT-STATISTICAL JOURNAL, 2024, 22 (02) : 211 - 237
  • [25] Hybrid semi-parametric modeling of biological systems: Application to spectroscopic data for the estimation of concentrations
    von Stosch, M.
    Oliveira, R.
    Peres, J.
    Feyo de Azevedo, S.
    20TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2010, 28 : 1021 - 1026
  • [26] Semi-parametric estimation of treatment effects in randomised experiments
    Athey, Susan
    Bickel, Peter J.
    Chen, Aiyou
    Imbens, Guido W.
    Pollmann, Michael
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2024, 85 (05) : 1615 - 1638
  • [27] Semi-parametric estimation in the compositional modeling of multicomponent systems from Raman spectroscopic data
    Sowa, Michael G.
    Smith, Michael S. D.
    Kendall, Catherine
    Bock, Erika R.
    Ko, Alex C. -T.
    Choo-Smith, Lin-P'ing
    Stone, Nicholas
    APPLIED SPECTROSCOPY, 2006, 60 (08) : 877 - 883
  • [28] Minimum-entropy estimation in semi-parametric models
    Wolsztynski, E
    Thierry, E
    Pronzato, L
    SIGNAL PROCESSING, 2005, 85 (05) : 937 - 949
  • [29] Semi-parametric modelling and likelihood estimation with estimating equations
    Lu, JC
    Chen, D
    Gan, NC
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2002, 44 (02) : 193 - 212
  • [30] Density estimation using non-parametric and semi-parametric mixtures
    Wang, Yong
    Chee, Chew-Seng
    STATISTICAL MODELLING, 2012, 12 (01) : 67 - 92