Good prime;
Reduction modulo a prime;
Tensor categories;
MORITA EQUIVALENCE;
FUSION CATEGORIES;
ALGEBRAS;
D O I:
10.1080/00927872.2011.617267
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We study good (i.e., semisimple) reductions of semisimple rigid tensor categories modulo primes. A prime p is called good for a semisimple rigid tensor category (sic) if such a reduction exists (otherwise, it is called bad). It is clear that a good prime must be relatively prime to the Muger squared norm vertical bar V vertical bar(2) of any simple object V of (sic). We show, using the Ito-Michler theorem in finite group theory, that for group-theoretical fusion categories, the converse is true. While the converse is false for general fusion categories, we obtain results about good and bad primes for many known fusion categories (e.g., for Verlinde categories). We also state some questions and conjectures regarding good and bad primes.
机构:
Univ Calif Riverside, Dept Math, Riverside, CA 92521 USAUniv Calif Riverside, Dept Math, Riverside, CA 92521 USA
Chang, Mei-Chu
D'Andrea, Carlos
论文数: 0引用数: 0
h-index: 0
机构:
Univ Barcelona, Dept Matemat Informat 1, Gran Via 585, E-08007 Barcelona, SpainUniv Calif Riverside, Dept Math, Riverside, CA 92521 USA
D'Andrea, Carlos
Ostafe, Alina
论文数: 0引用数: 0
h-index: 0
机构:
Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, AustraliaUniv Calif Riverside, Dept Math, Riverside, CA 92521 USA
Ostafe, Alina
Shparlinski, Igor E.
论文数: 0引用数: 0
h-index: 0
机构:
Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, AustraliaUniv Calif Riverside, Dept Math, Riverside, CA 92521 USA
Shparlinski, Igor E.
Sombra, Martin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Barcelona, Dept Matemat Informat 1, Gran Via 585, E-08007 Barcelona, Spain
ICREA, Passeig Lluis Co 23, Barcelona 08010, SpainUniv Calif Riverside, Dept Math, Riverside, CA 92521 USA