REDUCTIONS OF TENSOR CATEGORIES MODULO PRIMES

被引:0
|
作者
Etingof, Pavel [1 ]
Gelaki, Shlomo [2 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
基金
以色列科学基金会;
关键词
Good prime; Reduction modulo a prime; Tensor categories; MORITA EQUIVALENCE; FUSION CATEGORIES; ALGEBRAS;
D O I
10.1080/00927872.2011.617267
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study good (i.e., semisimple) reductions of semisimple rigid tensor categories modulo primes. A prime p is called good for a semisimple rigid tensor category (sic) if such a reduction exists (otherwise, it is called bad). It is clear that a good prime must be relatively prime to the Muger squared norm vertical bar V vertical bar(2) of any simple object V of (sic). We show, using the Ito-Michler theorem in finite group theory, that for group-theoretical fusion categories, the converse is true. While the converse is false for general fusion categories, we obtain results about good and bad primes for many known fusion categories (e.g., for Verlinde categories). We also state some questions and conjectures regarding good and bad primes.
引用
收藏
页码:4634 / 4643
页数:10
相关论文
共 50 条
  • [31] The tangent function and power residues modulo primes
    Zhi-Wei Sun
    Czechoslovak Mathematical Journal, 2023, 73 : 971 - 978
  • [32] A new theorem on quadratic residues modulo primes
    Houa, Qing-Hu
    Panb, Hao
    Sun, Zhi-Wei
    COMPTES RENDUS MATHEMATIQUE, 2022, 360 (01) : 1065 - 1069
  • [33] ORBITS OF POLYNOMIAL DYNAMICAL SYSTEMS MODULO PRIMES
    Chang, Mei-Chu
    D'Andrea, Carlos
    Ostafe, Alina
    Shparlinski, Igor E.
    Sombra, Martin
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (05) : 2015 - 2025
  • [34] Nonvanishing of the partition function modulo small primes
    Boylan, Matthew
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2006, 2006
  • [35] The residue of p(N) modulo small primes
    Ono, K
    RAMANUJAN JOURNAL, 1998, 2 (1-2): : 47 - 54
  • [36] Quadratic residues and quartic residues modulo primes
    Sun, Zhi-Wei
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2020, 16 (08) : 1833 - 1858
  • [37] On polynomials with roots modulo almost all primes
    Elsholtz, Christian
    Klahn, Benjamin
    Technau, Marc
    ACTA ARITHMETICA, 2022, : 251 - 263
  • [38] SOLVABILITY OF A SYSTEM OF POLYNOMIAL EQUATIONS MODULO PRIMES
    Jarviniemi, Olli
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2022, 106 (03) : 404 - 407
  • [39] The Residue of p(N) Modulo Small Primes
    Ken Ono
    The Ramanujan Journal, 1998, 2 : 47 - 54
  • [40] Congruences of multipartition functions modulo powers of primes
    Chen, William Y. C.
    Du, Daniel K.
    Hou, Qing-Hu
    Sun, Lisa H.
    RAMANUJAN JOURNAL, 2014, 35 (01): : 1 - 19