On polynomials with roots modulo almost all primes

被引:1
|
作者
Elsholtz, Christian [1 ]
Klahn, Benjamin [1 ]
Technau, Marc [1 ]
机构
[1] Graz Univ Technol, Inst Anal & Zahlentheorie, Kopernikusgasse 24-2, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
polynomial; root; reduction modulo p; Galois group; INTERSECTIVE POLYNOMIALS; SZEMEREDI;
D O I
10.4064/aa220407-9-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:251 / 263
页数:13
相关论文
共 50 条
  • [1] Primes modulo which almost all Fermat numbers are primitive roots
    Witno, Amin
    NOTE DI MATEMATICA, 2010, 30 (01): : 133 - 140
  • [2] INTEGER POLYNOMIALS THAT ARE REDUCIBLE MODULO ALL PRIMES
    BRANDL, R
    AMERICAN MATHEMATICAL MONTHLY, 1986, 93 (04): : 286 - 288
  • [3] SUBORDER POLYNOMIALS MODULO PRIMES
    Lehman, J. Larry
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2013, 28 (01): : 45 - 80
  • [4] Polynomials with roots mod p for all primes p
    Brandl, R
    Bubboloni, D
    Hupp, I
    JOURNAL OF GROUP THEORY, 2001, 4 (02) : 233 - 239
  • [5] FACTORING POLYNOMIALS MODULO SPECIAL PRIMES
    RONYAI, L
    COMBINATORICA, 1989, 9 (02) : 199 - 206
  • [6] Dynamical irreducibility of polynomials modulo primes
    Merai, Laszlo
    Ostafe, Alina
    Shparlinski, Igor E.
    MATHEMATISCHE ZEITSCHRIFT, 2021, 298 (3-4) : 1187 - 1199
  • [7] Dynamical irreducibility of polynomials modulo primes
    László Mérai
    Alina Ostafe
    Igor E. Shparlinski
    Mathematische Zeitschrift, 2021, 298 : 1187 - 1199
  • [8] Integer polynomials with roots mod p for all primes p
    Brandl, R
    JOURNAL OF ALGEBRA, 2001, 240 (02) : 822 - 835
  • [9] ON POLYNOMIALS AND ALMOST-PRIMES
    RIEGER, GJ
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 75 (01) : 100 - &
  • [10] Almost Uniform Distribution Modulo 1 and the Distribution of Primes
    S. Akiyama
    Acta Mathematica Hungarica, 1998, 78 : 39 - 44