Primes modulo which almost all Fermat numbers are primitive roots

被引:0
|
作者
Witno, Amin [1 ]
机构
[1] Philadelphia Univ, Dept Basic Sci, Amman 19392, Jordan
来源
NOTE DI MATEMATICA | 2010年 / 30卷 / 01期
关键词
elite primes; Fermat numbers;
D O I
10.1285/i15900932v30n1p133
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A prime p is called elite, or anti-elite, when all but finitely many Fermat numbers are quadratic nonresidues or residues, respectively, modulo p. It is known that if the multiplicative order of 2 modulo p is of the form 2(s) x 5, where s >= 2, then the prime p is either elite or anti-elite. Modulo elite primes of this kind, we describe some criteria by which all sufficiently large Fermat numbers be primitive roots, or all nonprimitive roots.
引用
收藏
页码:133 / 140
页数:8
相关论文
共 50 条