On Convergence of the Partially Randomized Extended Kaczmarz Method

被引:5
|
作者
Wu, Wen-Ting [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, MIIT Key Lab Math Theory & Computat Informat Secu, Beijing 102488, Peoples R China
基金
中国国家自然科学基金;
关键词
System of linear equations; Kaczmarz method; randomized iteration; convergence property; BLOCK KACZMARZ; PROJECTION; RATES;
D O I
10.4208/eajam.290921.240122
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
To complete the convergence theory of the partially randomized extended Kaczmarz method for solving the large inconsistent system of linear equations, we give its convergence theorem whether the coefficient matrix is of full rank or not, tall or flat. This convergence theorem also modifies the existing upper bound for the expected solution error of the partially randomized extended Kaczmarz method when the coefficient matrix is tall and of full column rank. Numerical experiments show that the partially randomized extended Kaczmarz method is convergent when the tall or flat coefficient matrix is rank deficient, and can also converge faster than the randomized extended Kaczmarz method.
引用
收藏
页码:435 / 448
页数:14
相关论文
共 50 条
  • [21] Comments on the Randomized Kaczmarz Method
    Thomas Strohmer
    Roman Vershynin
    Journal of Fourier Analysis and Applications, 2009, 15 : 437 - 440
  • [22] Convergence acceleration of Kaczmarz's method
    Brezinski, Claude
    Redivo-Zaglia, Michela
    JOURNAL OF ENGINEERING MATHEMATICS, 2015, 93 (01) : 3 - 19
  • [23] The equivalence of the randomized extended Gauss-Seidel and randomized extended Kaczmarz methods
    Wang, Lu
    Wu, Wen-Ting
    CALCOLO, 2025, 62 (02)
  • [24] RANDOMIZED EXTENDED KACZMARZ FOR SOLVING LEAST SQUARES
    Zouzias, Anastasios
    Freris, Nikolaos M.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (02) : 773 - 793
  • [25] Extended randomized Kaczmarz method for sparse least squares and impulsive noise problems
    Schoepfer, Frank
    Lorenz, Dirk A.
    Tondji, Lionel
    Winkler, Maximilian
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 652 : 132 - 154
  • [26] Linear Convergence of Randomized Kaczmarz Method for Solving Complex-Valued Phaseless Equations
    Huang, Meng
    Wang, Yang
    SIAM JOURNAL ON IMAGING SCIENCES, 2022, 15 (02): : 989 - 1016
  • [27] Rates of convergence of randomized Kaczmarz algorithms in Hilbert spaces
    Guo, Xin
    Lin, Junhong
    Zhou, Ding-Xuan
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2022, 61 : 288 - 318
  • [28] The randomized Kaczmarz method with mismatched adjoint
    Dirk A. Lorenz
    Sean Rose
    Frank Schöpfer
    BIT Numerical Mathematics, 2018, 58 : 1079 - 1098
  • [29] The randomized Kaczmarz method with mismatched adjoint
    Lorenz, Dirk A.
    Rose, Sean
    Schoepfer, Frank
    BIT NUMERICAL MATHEMATICS, 2018, 58 (04) : 1079 - 1098
  • [30] Randomized Kaczmarz iteration methods: Algorithmic extensions and convergence theory
    Bai, Zhong-Zhi
    Wu, Wen-Ting
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2023, 40 (03) : 1421 - 1443