Randomized Kaczmarz iteration methods: Algorithmic extensions and convergence theory

被引:10
|
作者
Bai, Zhong-Zhi [1 ,2 ]
Wu, Wen-Ting [3 ]
机构
[1] Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, State Key Lab Sci Engn Comp, POB 2719, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[3] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
System of linear equations; Randomized projection iteration; Kaczmarz method; Coordinate descent method; Convergence property; EXTENDED KACZMARZ; GAUSS-SEIDEL; RATES;
D O I
10.1007/s13160-023-00586-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We review and compare several representative and effective randomized projection iteration methods, including the randomized Kaczmarz method, the randomized coordinate descent method, and their modifications and extensions, for solving the large, sparse, consistent or inconsistent systems of linear equations. We also anatomize, extract, and purify the asymptotic convergence theories of these iteration methods, and discuss, analyze, and summarize their advantages and disadvantages from the viewpoints of both theory and computations.
引用
收藏
页码:1421 / 1443
页数:23
相关论文
共 50 条
  • [1] Randomized Kaczmarz iteration methods: Algorithmic extensions and convergence theory
    Zhong-Zhi Bai
    Wen-Ting Wu
    Japan Journal of Industrial and Applied Mathematics, 2023, 40 : 1421 - 1443
  • [2] The extensions of convergence rates of Kaczmarz-type methods
    Kang, Chuan-gang
    Zhou, Heng
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 382 (382)
  • [3] CONVERGENCE PROPERTIES OF THE RANDOMIZED EXTENDED GAUSS-SEIDEL AND KACZMARZ METHODS
    Ma, Anna
    Needell, Deanna
    Ramdas, Aaditya
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2015, 36 (04) : 1590 - 1604
  • [4] On convergence rate of the randomized Kaczmarz method
    Bai, Zhong-Zhi
    Wu, Wen-Ting
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 553 : 252 - 269
  • [5] A Randomized Kaczmarz Algorithm with Exponential Convergence
    Strohmer, Thomas
    Vershynin, Roman
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2009, 15 (02) : 262 - 278
  • [6] Preasymptotic convergence of randomized Kaczmarz method
    Jiao, Yuling
    Jin, Bangti
    Lu, Xiliang
    INVERSE PROBLEMS, 2017, 33 (12)
  • [7] A Randomized Kaczmarz Algorithm with Exponential Convergence
    Thomas Strohmer
    Roman Vershynin
    Journal of Fourier Analysis and Applications, 2009, 15 : 262 - 278
  • [8] A modified partially randomized extended Kaczmarz iteration method
    Chen, Fang
    Mao, Jin-Feng
    APPLIED MATHEMATICS LETTERS, 2024, 154
  • [9] Projected randomized Kaczmarz methods
    Wu, Nianci
    Xiang, Hua
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 372
  • [10] Linear convergence of the randomized sparse Kaczmarz method
    Schoepfer, Frank
    Lorenz, Dirk A.
    MATHEMATICAL PROGRAMMING, 2019, 173 (1-2) : 509 - 536