Model Parameters Identification for Excess Oxygen by Standard Genetic Algorithm

被引:0
|
作者
Rajarathinam, Kumaran [1 ]
Gomm, J. Barry [1 ]
Yu, DingLi [1 ]
Abdelhadi, Ahmed Saad [1 ]
机构
[1] Liverpool John Moores Univ, Sch Engn, Control Syst Grp, Mech Engn & Mat Res Ctr MEMARC, Byrom St, Liverpool L3 3AF, Merseyside, England
关键词
excess oxygen; model parameters identification; genetic algorithm; methane combustion; glass furnace;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a realistic excess oxygen model parameter identification by Standard Genetic Algorithms (SGAs) is proposed and demonstrated. The realistic excess oxygen model is developed by three sub-model; air-fuel ratio conversion model, dynamic continuous transfer function and excess oxygen look-up table to characterise the real excess oxygen plant's numerical data. The predetermined time constant approximation method is applied on 1st, 2nd, 3rd, 4th and 5th model orders for an initial value estimation with SGAs. For an optimal model order assessment and selection, the information criteria are applied. The simulation results assured that the 4th order continuous transfer function as a realistic model well characterises the real excess oxygen plant's response.
引用
收藏
页码:198 / 203
页数:6
相关论文
共 50 条
  • [41] Using genetic algorithm for magnitude model parameter identification
    Tan, Bin
    Zhou, Haiyun
    Zhang, Jihua
    Tan, Bitao
    Tang, Litie
    Guo, Shibo
    Journal of Information and Computational Science, 2007, 4 (04): : 1105 - 1112
  • [42] Hybrid identification method of material parameters based on genetic algorithm and improved homotopy algorithm
    Chen, Rui
    Zhang, Quanwei
    Peng, Ruitao
    Zhao, Ziheng
    Hu, Congfang
    Xiao, Xiangwu
    Li, Jisheng
    MATERIALS TODAY COMMUNICATIONS, 2022, 33
  • [43] Nonlinear Hammerstein model identification using Genetic Algorithm
    Akramizadeh, A
    Farjami, AA
    Khaloozadeh, H
    2002 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE SYSTEMS, PROCEEDINGS, 2002, : 351 - 356
  • [44] Identification of Friction Parameters Based on Genetic Algorithm in Servo Control System
    Wu, Lifen
    ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, PT I, 2011, 7002 : 43 - 50
  • [45] Identification of parameters of explosive JWL state equation based on genetic algorithm
    Cui, Hao
    Guo, Rui
    Song, Pu
    Gu, Xiaohui
    Zhou, Hao
    Xing, Boyang
    Zhendong yu Chongji/Journal of Vibration and Shock, 2022, 41 (09): : 174 - 180
  • [46] Parameters identification for smart dampers based on simulated annealing and genetic algorithm
    Liu, Peng
    Liu, Hongjun
    Teng, Jun
    Cao, Tianyi
    IEEE ICMA 2006: PROCEEDING OF THE 2006 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, VOLS 1-3, PROCEEDINGS, 2006, : 2199 - +
  • [47] Improved genetic algorithm for parameters identification of cart-double pendulum
    Dan, Yuanhong
    Xu, Peng
    Zhang, Wei
    Tan, Zhi
    JOURNAL OF VIBROENGINEERING, 2019, 21 (06) : 1587 - 1599
  • [48] Parameters Identification for Nonlinear Dynamic Systems Via Genetic Algorithm Optimization
    Gondhalekar, A. C.
    Petrov, E. P.
    Imregun, M.
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2009, 4 (04): : 1 - 9
  • [49] Selection of sand models and identification of parameters using an enhanced genetic algorithm
    Jin, Yin-Fu
    Yin, Zhen-Yu
    Shen, Shui-Long
    Hicher, Pierre-Yves
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2016, 40 (08) : 1219 - 1240
  • [50] Parameters Identification of Passive Force Control System Based on Genetic Algorithm
    Zhang Biao
    Dong Yanliang
    Zhao Keding
    Sun Fengying
    PROCEEDINGS OF THE 27TH CHINESE CONTROL CONFERENCE, VOL 3, 2008, : 230 - 233