Model Parameters Identification for Excess Oxygen by Standard Genetic Algorithm

被引:0
|
作者
Rajarathinam, Kumaran [1 ]
Gomm, J. Barry [1 ]
Yu, DingLi [1 ]
Abdelhadi, Ahmed Saad [1 ]
机构
[1] Liverpool John Moores Univ, Sch Engn, Control Syst Grp, Mech Engn & Mat Res Ctr MEMARC, Byrom St, Liverpool L3 3AF, Merseyside, England
关键词
excess oxygen; model parameters identification; genetic algorithm; methane combustion; glass furnace;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a realistic excess oxygen model parameter identification by Standard Genetic Algorithms (SGAs) is proposed and demonstrated. The realistic excess oxygen model is developed by three sub-model; air-fuel ratio conversion model, dynamic continuous transfer function and excess oxygen look-up table to characterise the real excess oxygen plant's numerical data. The predetermined time constant approximation method is applied on 1st, 2nd, 3rd, 4th and 5th model orders for an initial value estimation with SGAs. For an optimal model order assessment and selection, the information criteria are applied. The simulation results assured that the 4th order continuous transfer function as a realistic model well characterises the real excess oxygen plant's response.
引用
收藏
页码:198 / 203
页数:6
相关论文
共 50 条
  • [31] Tuning model parameters through a genetic algorithm approach
    Coroiu, Adriana M.
    2016 IEEE 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING (ICCP), 2016, : 135 - 140
  • [32] Genetic algorithm for optimization of HEMT model parasitic parameters
    Phuong, Phan Hong
    Thanh, Tong Duc
    2008 SECOND INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND ELECTRONICS, 2008, : 351 - 355
  • [33] Optimization of parameters of FTS kinetic model by genetic algorithm
    Han, R.F.
    Zhang, Y.K.
    Wang, Y.N.
    Xu, Y.Y.
    Li, Y.W.
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2001, 29 (04):
  • [34] Development of a Genetic Algorithm for the search of Optical Model parameters
    Abriola, D.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2011, 269 (24): : 2984 - 2989
  • [35] Parameters optimization on DHSVM model based on a genetic algorithm
    Yao C.
    Yang Z.
    Frontiers of Earth Science in China, 2009, 3 (3): : 374 - 380
  • [36] Recognition of parameters in fermentation dynamics model by genetic algorithm
    Shanghai Inst of Metallurgy Chinese, Acad of Sciences, Shanghai, China
    Huagong Xuebao, 3 (338-342):
  • [37] Determination of material parameters of a viscoplastic model by genetic algorithm
    Dusunceli, Necmi
    Colak, Ozgen U.
    Filiz, Coskun
    MATERIALS & DESIGN, 2010, 31 (03): : 1250 - 1255
  • [38] Preference-based non-dominated sorting genetic algorithm for dynamic model parameters identification
    Shang, Xiuqin
    Lu, Jiangang
    Sun, Youxian
    Lian, Haibin
    Huagong Xuebao/Journal of Chemical Industry and Engineering (China), 2008, 59 (07): : 1620 - 1624
  • [39] A RECURSIVE ALGORITHM FOR SIMULTANEOUS IDENTIFICATION OF MODEL ORDER AND PARAMETERS
    NIU, S
    XIAO, DY
    FISHER, DG
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1990, 38 (05): : 884 - 886
  • [40] CIJAYA algorithm for parameters identification of photovoltaic module model
    Jian X.
    Weng Z.
    Wang R.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2021, 42 (11): : 19 - 26