Model Parameters Identification for Excess Oxygen by Standard Genetic Algorithm

被引:0
|
作者
Rajarathinam, Kumaran [1 ]
Gomm, J. Barry [1 ]
Yu, DingLi [1 ]
Abdelhadi, Ahmed Saad [1 ]
机构
[1] Liverpool John Moores Univ, Sch Engn, Control Syst Grp, Mech Engn & Mat Res Ctr MEMARC, Byrom St, Liverpool L3 3AF, Merseyside, England
关键词
excess oxygen; model parameters identification; genetic algorithm; methane combustion; glass furnace;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a realistic excess oxygen model parameter identification by Standard Genetic Algorithms (SGAs) is proposed and demonstrated. The realistic excess oxygen model is developed by three sub-model; air-fuel ratio conversion model, dynamic continuous transfer function and excess oxygen look-up table to characterise the real excess oxygen plant's numerical data. The predetermined time constant approximation method is applied on 1st, 2nd, 3rd, 4th and 5th model orders for an initial value estimation with SGAs. For an optimal model order assessment and selection, the information criteria are applied. The simulation results assured that the 4th order continuous transfer function as a realistic model well characterises the real excess oxygen plant's response.
引用
收藏
页码:198 / 203
页数:6
相关论文
共 50 条
  • [1] InterCriteria Analysis of a Model Parameters Identification using Genetic Algorithm
    Roeva, Olympia
    Fidanova, Stefka
    Vassilev, Peter
    Gepner, Pawel
    PROCEEDINGS OF THE 2015 FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2015, 5 : 501 - 506
  • [2] Decimal strings genetic algorithm for Theis model hydrogeological parameters identification
    Li, Jing-Sheng
    Yao, Lei-Hua
    Meitiandizhi Yu Kantan/Coal Geology & Exploration, 2001, 29 (06):
  • [3] FPGA Based Implementation of a Genetic Algorithm for ARMA Model Parameters Identification
    Merabti, Hocine
    Massicotte, Daniel
    GLSVLSI'14: PROCEEDINGS OF THE 2014 GREAT LAKES SYMPOSIUM ON VLSI, 2014, : 95 - 96
  • [4] Fuzzy Hammerstein model and its parameters identification using genetic algorithm
    Liutkevicius, Raimundas
    Dainys, Saulius
    Electrical and Control Technologies, Proceedings, 2006, : 195 - 200
  • [5] An Improved Search Space Resizing Method for Model Identification by Standard Genetic Algorithm
    Rajarathinam, Kumaran
    Gomm, J. Barry
    Yu, DingLi
    Abdelhadi, Ahmed Saad
    2015 21ST INTERNATIONAL CONFERENCE ON AUTOMATION AND COMPUTING (ICAC), 2015, : 383 - 388
  • [6] Real coded genetic algorithm for Jiles-Atherton model parameters identification
    Leite, JV
    Avila, SL
    Batistela, NJ
    Carpes, WP
    Sadowski, N
    Kuo-Peng, P
    Bastos, JPA
    IEEE TRANSACTIONS ON MAGNETICS, 2004, 40 (02) : 888 - 891
  • [7] Genetic algorithm in material model parameters' identification for low-cycle fatigue
    Franulovic, Marina
    Basan, Robert
    Prebil, Ivan
    COMPUTATIONAL MATERIALS SCIENCE, 2009, 45 (02) : 505 - 510
  • [8] A model of process steam network in a steel plant with identification of parameters by a genetic algorithm
    Guedes Alcoforado, Gabriel Nazareth
    de Oliveira Junior, Valter Barbosa
    de Almeida, Gustavo Maia
    de Souza Leite Cuadros, Marco Antonio
    2016 12TH IEEE/IAS INTERNATIONAL CONFERENCE ON INDUSTRY APPLICATIONS (INDUSCON), 2016,
  • [9] Extended Kalman filter algorithm for parameters identification of dynamic battery model based on genetic algorithm optimization
    School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China
    Jiang, J.-C. (jcjiang@bjtu.edu.cn), 2012, Editorial Board of Jilin University (42):
  • [10] The application of genetic algorithm in model identification
    Liu, CL
    Liu, JZ
    Niu, YG
    Yao, WY
    2002 IEEE REGION 10 CONFERENCE ON COMPUTERS, COMMUNICATIONS, CONTROL AND POWER ENGINEERING, VOLS I-III, PROCEEDINGS, 2002, : 1261 - 1264