Retrieving Quantum Information with Active Learning

被引:15
|
作者
Ding, Yongcheng [1 ,2 ,3 ]
Martin-Guerrero, Jose D. [4 ]
Sanz, Mikel [3 ]
Magdalena-Benedicto, Rafael [4 ]
Chen, Xi [1 ,2 ,3 ]
Solano, Enrique [1 ,2 ,3 ,5 ,6 ]
机构
[1] Shanghai Univ, Int Ctr Quantum Artificial Intelligence Sci & Tec, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China
[3] Univ Basque Country, Dept Phys Chem, UPV EHU, Apartado 644, Bilbao 48080, Spain
[4] Univ Valencia, Elect Engn Dept, IDAL, Avinguda Univ S-N, E-46100 Valencia, Spain
[5] Ikerbasque, Basque Fdn Sci, Maria Diaz de Haro 3, Bilbao 48013, Spain
[6] IQM, Munich, Germany
基金
中国国家自然科学基金;
关键词
ALGORITHM;
D O I
10.1103/PhysRevLett.124.140504
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Active learning is a machine learning method aiming at optimal design for model training. At variance with supervised learning, which labels all samples, active learning provides an improved model by labeling samples with maximal uncertainty according to the estimation model. Here, we propose the use of active learning for efficient quantum information retrieval, which is a crucial task in the design of quantum experiments. Meanwhile, when dealing with large data output, we employ active learning for the sake of classification with minimal cost in fidelity loss. Indeed, labeling only 5% samples, we achieve almost 90% rate estimation. The introduction of active learning methods in the data analysis of quantum experiments will enhance applications of quantum technologies.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Towards Retrieving Relevant Information Graphics
    Li, Zhuo
    Stagitis, Matthew
    Carberry, Sandra
    Mccoy, Kathleen F.
    SIGIR'13: THE PROCEEDINGS OF THE 36TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH & DEVELOPMENT IN INFORMATION RETRIEVAL, 2013, : 789 - 792
  • [42] Retrieving Information from Multiple Sources
    Roy, Anurag
    Ghosh, Kripabandhu
    Basu, Moumita
    Gupta, Parth
    Ghosh, Saptarshi
    COMPANION PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2018 (WWW 2018), 2018, : 43 - 44
  • [43] Focused crawling for retrieving chemical information
    Xia, Zhaojie
    Guo, Li
    Liang, Chunyang
    Li, Xiaoxia
    Yang, Zhangyuan
    INNOVATIONS IN HYBRID INTELLIGENT SYSTEMS, 2007, 44 : 433 - +
  • [44] Retrieving qubit information despite decoherence
    Aharony, Amnon
    Gurvitz, Shmuel
    Entin-Wohlman, Ora
    Dattagupta, Sushanta
    PHYSICAL REVIEW B, 2010, 82 (24):
  • [45] Retrieving information from a hierarchical plan
    Schneider, Darryl W.
    Logan, Gordon D.
    JOURNAL OF EXPERIMENTAL PSYCHOLOGY-LEARNING MEMORY AND COGNITION, 2007, 33 (06) : 1076 - 1091
  • [46] GENERATING NEW KNOWLEDGE BY RETRIEVING INFORMATION
    DAVIES, R
    JOURNAL OF DOCUMENTATION, 1990, 46 (04) : 368 - 372
  • [47] RETRIEVING DOW-JONES INFORMATION
    BARTIMO, J
    PERSONAL COMPUTING, 1985, 9 (10): : 103 - &
  • [48] Adaptive Quantum State Tomography with Active Learning
    Lange, Hannah
    Kebric, Matjaz
    Buser, Maximilian
    Schollwoeck, Ulrich
    Grusdt, Fabian
    Bohrdt, Annabelle
    QUANTUM, 2023, 7
  • [49] Active learning in the quantum chemistry course.
    Wright, JC
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1998, 216 : U626 - U626
  • [50] Active learning on a programmable photonic quantum processor
    Ding, Chen
    Xu, Xiao-Yue
    Niu, Yun-Fei
    Zhang, Shuo
    Huang, He-Liang
    Bao, Wan-Su
    QUANTUM SCIENCE AND TECHNOLOGY, 2023, 8 (03)