Retrieving Quantum Information with Active Learning

被引:15
|
作者
Ding, Yongcheng [1 ,2 ,3 ]
Martin-Guerrero, Jose D. [4 ]
Sanz, Mikel [3 ]
Magdalena-Benedicto, Rafael [4 ]
Chen, Xi [1 ,2 ,3 ]
Solano, Enrique [1 ,2 ,3 ,5 ,6 ]
机构
[1] Shanghai Univ, Int Ctr Quantum Artificial Intelligence Sci & Tec, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China
[3] Univ Basque Country, Dept Phys Chem, UPV EHU, Apartado 644, Bilbao 48080, Spain
[4] Univ Valencia, Elect Engn Dept, IDAL, Avinguda Univ S-N, E-46100 Valencia, Spain
[5] Ikerbasque, Basque Fdn Sci, Maria Diaz de Haro 3, Bilbao 48013, Spain
[6] IQM, Munich, Germany
基金
中国国家自然科学基金;
关键词
ALGORITHM;
D O I
10.1103/PhysRevLett.124.140504
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Active learning is a machine learning method aiming at optimal design for model training. At variance with supervised learning, which labels all samples, active learning provides an improved model by labeling samples with maximal uncertainty according to the estimation model. Here, we propose the use of active learning for efficient quantum information retrieval, which is a crucial task in the design of quantum experiments. Meanwhile, when dealing with large data output, we employ active learning for the sake of classification with minimal cost in fidelity loss. Indeed, labeling only 5% samples, we achieve almost 90% rate estimation. The introduction of active learning methods in the data analysis of quantum experiments will enhance applications of quantum technologies.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Retrieving new information on ichthyosis
    Monica Harrington
    Lab Animal, 2012, 41 : 92 - 92
  • [22] MACHINES FOR RETRIEVING INFORMATION IN THE USSR
    RAKOV, BM
    CERENIN, VP
    UNESCO BULLETIN FOR LIBRARIES, 1957, 11 (8-9): : 192 - 197
  • [23] THE DIFFICULTY OF RETRIEVING USEFUL INFORMATION
    MARTIN, DF
    JOURNAL OF CHEMICAL EDUCATION, 1989, 66 (05) : 448 - 448
  • [24] Active learning for quantum mechanical measurements
    Zhu, Ruidi
    Pike-Burke, Ciara
    Mintert, Florian
    PHYSICAL REVIEW A, 2024, 109 (06)
  • [25] Quantum Speedup for Active Learning Agents
    Davide Paparo, Giuseppe
    Dunjko, Vedran
    Makmal, Adi
    Angel Martin-Delgado, Miguel
    Briegel, Hans J.
    PHYSICAL REVIEW X, 2014, 4 (03):
  • [26] Generalization in Quantum Machine Learning: A Quantum Information Standpoint
    Banchi, Leonardo
    Pereira, Jason
    Pirandola, Stefano
    PRX QUANTUM, 2021, 2 (04):
  • [27] Active Learning Using Uncertainty Information
    Yang, Yazhou
    Loog, Marco
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 2646 - 2651
  • [28] An information geometric perspective on active learning
    Yeang, CH
    MACHINE LEARNING: ECML 2002, 2002, 2430 : 480 - 492
  • [29] Information Literacy in the Active Learning Classroom
    Maybee, Clarence
    Doan, Tomalee
    Flierl, Michael
    JOURNAL OF ACADEMIC LIBRARIANSHIP, 2016, 42 (06): : 705 - 711
  • [30] Finding Information About Active Learning
    O'Donnell, Joseph
    JOURNAL OF CANCER EDUCATION, 2011, 26 (04) : 597 - 597