Retrieving Quantum Information with Active Learning

被引:15
|
作者
Ding, Yongcheng [1 ,2 ,3 ]
Martin-Guerrero, Jose D. [4 ]
Sanz, Mikel [3 ]
Magdalena-Benedicto, Rafael [4 ]
Chen, Xi [1 ,2 ,3 ]
Solano, Enrique [1 ,2 ,3 ,5 ,6 ]
机构
[1] Shanghai Univ, Int Ctr Quantum Artificial Intelligence Sci & Tec, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China
[3] Univ Basque Country, Dept Phys Chem, UPV EHU, Apartado 644, Bilbao 48080, Spain
[4] Univ Valencia, Elect Engn Dept, IDAL, Avinguda Univ S-N, E-46100 Valencia, Spain
[5] Ikerbasque, Basque Fdn Sci, Maria Diaz de Haro 3, Bilbao 48013, Spain
[6] IQM, Munich, Germany
基金
中国国家自然科学基金;
关键词
ALGORITHM;
D O I
10.1103/PhysRevLett.124.140504
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Active learning is a machine learning method aiming at optimal design for model training. At variance with supervised learning, which labels all samples, active learning provides an improved model by labeling samples with maximal uncertainty according to the estimation model. Here, we propose the use of active learning for efficient quantum information retrieval, which is a crucial task in the design of quantum experiments. Meanwhile, when dealing with large data output, we employ active learning for the sake of classification with minimal cost in fidelity loss. Indeed, labeling only 5% samples, we achieve almost 90% rate estimation. The introduction of active learning methods in the data analysis of quantum experiments will enhance applications of quantum technologies.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Retrieving information from a black hole using quantum machine learning
    Leone, Lorenzo
    Oliviero, Salvatore F. E.
    Piemontese, Stefano
    True, Sarah
    Hamma, Alioscia
    PHYSICAL REVIEW A, 2022, 106 (06)
  • [2] Retrieving and routing quantum information in a quantum network
    S. Sazim
    V. Chiranjeevi
    I. Chakrabarty
    K. Srinathan
    Quantum Information Processing, 2015, 14 : 4651 - 4664
  • [3] Retrieving and routing quantum information in a quantum network
    Sazim, S.
    Chiranjeevi, V.
    Chakrabarty, I.
    Srinathan, K.
    QUANTUM INFORMATION PROCESSING, 2015, 14 (12) : 4651 - 4664
  • [4] An Information Retrieving Service for Distance Learning
    Nakayama, Lauro
    Vicari, M. Rosa
    Coelho, Helder
    IPSI BGD TRANSACTIONS ON INTERNET RESEARCH, 2005, 1 (01): : 49 - 56
  • [5] A Personalized Information Retrieval Module for Retrieving Learning Materials
    Roy, Devshri
    Sarkar, Sudeshna
    Ghose, Sujoy
    2009 INTERNATIONAL WORKSHOP ON TECHNOLOGY FOR EDUCATION (T4E 2009), 2009, : 68 - 74
  • [6] Retrieving information
    Arquero Aviles, Rosario
    REVISTA GENERAL DE INFORMACION Y DOCUMENTACION, 2009, 19 : 433 - 434
  • [7] USING CATEGORY KNOWLEDGE TO SIMPLIFY LEARNING AND RETRIEVING INSTANCE INFORMATION
    CLAPPER, JP
    BULLETIN OF THE PSYCHONOMIC SOCIETY, 1988, 26 (06) : 519 - 519
  • [8] A Fuzzy Learning Model for retrieving and learning information in Visual Working brain Memory mechanism
    Tajrobehkar, Mitra
    Bagheri-Shouraki, Saeed
    Jahed, Mehran
    2017 25TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2017, : 61 - 64
  • [9] RETRIEVING LEGAL INFORMATION
    TAPPER, C
    DATA PROCESSING, 1966, 8 (06): : 314 - 317
  • [10] Retrieving medical information
    Stielstra, J
    HOSPITAL PRACTICE, 1996, 31 (10): : 42 - 42