Sharp homogeneity in some generalized polygons

被引:2
|
作者
Grundhöfer, T
Van Maldeghem, H
机构
[1] Univ Wurzburg, Math Inst, D-97074 Wurzburg, Germany
[2] State Univ Ghent, Dept Pure Math & Comp Algebra, B-9000 Ghent, Belgium
关键词
51E15; 51E12;
D O I
10.1007/s00013-003-4717-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that, if a collineation group G of a generalized (2n + 1)-gon Gamma has the property that every symmetry of any apartment extends uniquely to a collineation in G, then Gamma is the unique projective plane with 3 points per line (the Fano plane) and G is its full collineation group. A similar result holds if one substitutes "apartment" with "path of length 2k less than or equal to 2n + 2".
引用
收藏
页码:491 / 496
页数:6
相关论文
共 50 条
  • [41] Generalized guarding and partitioning for rectilinear polygons
    Gyori, E
    Hoffmann, F
    Kriegel, K
    Shermer, T
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1996, 6 (01): : 21 - 44
  • [42] A note on the model theory of generalized polygons
    Tent, K
    JOURNAL OF SYMBOLIC LOGIC, 2000, 65 (02) : 692 - 702
  • [43] GENERALIZED CANTOR MANIFOLDS AND HOMOGENEITY
    Karassev, A.
    Krupski, P.
    Todorov, V.
    Valov, V.
    HOUSTON JOURNAL OF MATHEMATICS, 2012, 38 (02): : 583 - 609
  • [44] Homogeneity in generalized function algebras
    Hanel, Clemens
    Mayerhofer, Eberhard
    Pilipovic, Stevan
    Vernaeve, Hans
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 339 (02) : 889 - 904
  • [45] SOME THEOREMS ON CONVEX POLYGONS
    ALTMAN, E
    CANADIAN MATHEMATICAL BULLETIN, 1972, 15 (03): : 329 - &
  • [46] Regular partitions of (weak) finite generalized polygons
    A. De Wispelaere
    H. Van Maldeghem
    Designs, Codes and Cryptography, 2008, 47 : 53 - 73
  • [47] NONEXISTENCE OF CERTAIN GENERALIZED POLYGONS .2.
    TITS, J
    INVENTIONES MATHEMATICAE, 1979, 51 (03) : 267 - 269
  • [48] Generalized Gaussian quadrature rules on arbitrary polygons
    Mousavi, S. E.
    Xiao, H.
    Sukumar, N.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 82 (01) : 99 - 113
  • [49] Integral Hecke Algebras for Finite Generalized Polygons
    Hacioglu, Ilhan
    ALGEBRA COLLOQUIUM, 2011, 18 (02) : 259 - 272
  • [50] FINITE DISTANCE-TRANSITIVE GENERALIZED POLYGONS
    BUEKENHOUT, F
    VANMALDEGHEM, H
    GEOMETRIAE DEDICATA, 1994, 52 (01) : 41 - 51