Sharp homogeneity in some generalized polygons

被引:2
|
作者
Grundhöfer, T
Van Maldeghem, H
机构
[1] Univ Wurzburg, Math Inst, D-97074 Wurzburg, Germany
[2] State Univ Ghent, Dept Pure Math & Comp Algebra, B-9000 Ghent, Belgium
关键词
51E15; 51E12;
D O I
10.1007/s00013-003-4717-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that, if a collineation group G of a generalized (2n + 1)-gon Gamma has the property that every symmetry of any apartment extends uniquely to a collineation in G, then Gamma is the unique projective plane with 3 points per line (the Fano plane) and G is its full collineation group. A similar result holds if one substitutes "apartment" with "path of length 2k less than or equal to 2n + 2".
引用
收藏
页码:491 / 496
页数:6
相关论文
共 50 条
  • [21] Optimizing generalized kernels of polygons
    Alejandra Martinez-Moraian
    David Orden
    Leonidas Palios
    Carlos Seara
    Paweł Żyliński
    Journal of Global Optimization, 2021, 80 : 887 - 920
  • [22] Embeddings of small generalized polygons
    Thas, J. A.
    Van Maldeghem, H.
    FINITE FIELDS AND THEIR APPLICATIONS, 2006, 12 (04) : 565 - 594
  • [23] The Euclidean distortion of generalized polygons
    Kobayashi, Toshimasa
    Kondo, Takefumi
    ADVANCES IN GEOMETRY, 2015, 15 (04) : 499 - 506
  • [24] On homogeneity and homogeneity components in generalized topological spaces
    Al Ghour, Samer
    Al-Omari, Ahmad
    Noiri, Takashi
    FILOMAT, 2013, 27 (06) : 1097 - 1105
  • [25] Epimorphisms of generalized polygons, part 2: Some existence and non-existence results
    Gramlich, R
    Van Maldeghem, H
    FINITE GEOMETRIES, PROCEEDINGS, 2001, 3 : 177 - 200
  • [26] LDPC codes from generalized polygons
    Liu, ZY
    Pados, DA
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (11) : 3890 - 3898
  • [27] Generalized polygons with split Levi factors
    Tent, K
    ARCHIV DER MATHEMATIK, 2001, 76 (01) : 7 - 11
  • [28] CYCLIC TRANSFORMATIONS OF POLYGONS AND GENERALIZED INVERSE
    DAVIS, PJ
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1977, 29 (04): : 756 - 770
  • [29] Note on the variance of generalized random polygons
    Fodor, Ferenc
    Grunfelder, Balazs
    AEQUATIONES MATHEMATICAE, 2025,
  • [30] GENERALIZED ATMOSPHERIC SAMPLING OF KNOTTED POLYGONS
    Janse Van Rensburg, E. J.
    Rechnitzer, A.
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2011, 20 (08) : 1145 - 1171