Sharp homogeneity in some generalized polygons

被引:2
|
作者
Grundhöfer, T
Van Maldeghem, H
机构
[1] Univ Wurzburg, Math Inst, D-97074 Wurzburg, Germany
[2] State Univ Ghent, Dept Pure Math & Comp Algebra, B-9000 Ghent, Belgium
关键词
51E15; 51E12;
D O I
10.1007/s00013-003-4717-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that, if a collineation group G of a generalized (2n + 1)-gon Gamma has the property that every symmetry of any apartment extends uniquely to a collineation in G, then Gamma is the unique projective plane with 3 points per line (the Fano plane) and G is its full collineation group. A similar result holds if one substitutes "apartment" with "path of length 2k less than or equal to 2n + 2".
引用
收藏
页码:491 / 496
页数:6
相关论文
共 50 条