Nematic Liquid Crystals: From Maier-Saupe to a Continuum Theory

被引:140
|
作者
Ball, John M. [1 ]
Majumdar, Apala [1 ]
机构
[1] Univ Oxford, Inst Math, Oxford OX1 3LB, England
基金
英国工程与自然科学研究理事会;
关键词
Eigenvalue constraints; elastic constants; Landau-de Gennes; Maier-Saupe; nematic liquid crystals;
D O I
10.1080/15421401003795555
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We define a continuum energy functional that effectively interpolates between the mean-field Maier-Saupe energy and the continuum Landau-de Gennes energy functional and can describe both spatially homogeneous and inhomogeneous systems. In the mean-field approach the main macroscopic variable, the Q-tensor order parameter, is defined in terms of the second moment of a probability distribution function. This definition imposes certain constraints on the eigenvalues of the Q-tensor order parameter, which may be interpreted as physical constraints. We define a thermotropic bulk potential which blows up whenever the eigenvalues of the Q-tensor order parameter approach physically unrealistic values. As a consequence, the minimizers of this continuum energy functional have physically realistic order parameters in all temperature regimes. We study the asymptotics of this bulk potential and show that this model also predicts a first-order nematic-isotropic phase transition, whilst respecting the physical constraints. In contrast, in the Landau-de Gennes framework the Q-tensor order parameter is often defined independently of the probability distribution function, and the theory makes physically unrealistic predictions about the equilibrium order parameters in the low-temperature regime.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [21] EXACT SOLUTION OF MAIER-SAUPE MODEL FOR A NEMATIC LIQUID-CRYSTAL ON A ONE-DIMENSIONAL LATTICE
    VUILLERMOT, PA
    ROMERIO, MV
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1973, 6 (20): : 2922 - 2930
  • [22] Maier-Saupe and Onsager approaches as limits of the nematic-isotropic phase transition
    Simoes, M
    Pazeti, M
    Domiciano, SM
    PHYSICAL REVIEW E, 2002, 65 (01): : 1 - 011707
  • [23] Generalization of the Maier-Saupe theory of the nematics within Tsallis thermostatistics
    Kayacan, O
    Büyükkiliç, F
    Demirhan, D
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 301 (1-4) : 255 - 260
  • [24] A good and computationally efficient polynomial approximation to the Maier-Saupe nematic free energy
    Soule, Ezequiel R.
    Rey, Alejandro D.
    LIQUID CRYSTALS, 2011, 38 (02) : 201 - 205
  • [25] Solute order parameters in liquid crystals from NMR spectra solved with evolutionary algorithms: Application of double Maier-Saupe Kobayashi-McMillan theory
    Weber, Adrian C. J.
    Yang, Xuan
    Dong, Ronald Y.
    Meerts, W. Leo
    Burnell, E. Elliott
    CHEMICAL PHYSICS LETTERS, 2009, 476 (1-3) : 116 - 119
  • [26] Probability distribution function for reorientations in Maier-Saupe potential
    Sitnitsky, A. E.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 452 : 220 - 228
  • [27] Maier-Saupe nematogenic fluid: fiield theoretical approach
    Holovko, M.
    di Caprio, D.
    Kravtsiv, I.
    CONDENSED MATTER PHYSICS, 2011, 14 (03)
  • [28] Maier-Saupe model of liquid crystals: Isotropic-nematic phase transitions and second-order statistics studied by Shiino's perturbation theory and strongly nonlinear Smoluchowski equations
    Frank, TD
    PHYSICAL REVIEW E, 2005, 72 (04):
  • [29] Uniaxial and biaxial structures in the elastic Maier-Saupe model
    Petri, A.
    Liarte, D. B.
    Salinas, S. R.
    PHYSICAL REVIEW E, 2018, 97 (01)
  • [30] Maier-Saupe model for a mixture of uniaxial and biaxial molecules
    Nascimento, E. S.
    Henriques, E. F.
    Vieira, A. P.
    Salinas, S. R.
    PHYSICAL REVIEW E, 2015, 92 (06):