Integrative analysis of the metabolome and transcriptome reveals the molecular mechanism of chlorogenic acid synthesis in peach fruit

被引:11
|
作者
Su, Ziwen [1 ,2 ]
Jia, Haoran [2 ,3 ]
Sun, Meng [1 ]
Cai, Zhixiang [1 ]
Shen, Zhijun [1 ]
Zhao, Bintao [1 ,2 ]
Li, Jiyao [1 ,2 ]
Ma, Ruijuan [1 ]
Yu, Mingliang [1 ,2 ]
Yan, Juan [1 ]
机构
[1] Jiangsu Acad Agr Sci, Inst Pomol, Jiangsu Key Lab Hort Crop Genet Improvement, Nanjing, Peoples R China
[2] Nanjing Agr Univ, Coll Hort, Nanjing, Peoples R China
[3] Zhejiang Univ, Coll Agr & Biotechnol, Hangzhou, Peoples R China
来源
FRONTIERS IN NUTRITION | 2022年 / 9卷
关键词
peach; chlorogenic acid; metabolome; transcriptome; candidate genes; EXPRESSION; PATHWAY; GENE; BIOSYNTHESIS; SHIKIMATE; COENZYME; CLONING;
D O I
10.3389/fnut.2022.961626
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
As the most abundant phenolic acid in peach fruit, chlorogenic acid (CGA) is an important entry point for the development of natural dietary supplements and functional foods. However, the metabolic and regulation mechanisms underlying its accumulation in peach fruits remain unclear. In this study, we evaluated the composition and content of CGAs in mature fruits of 205 peach cultivars. In peach fruits, three forms of CGA (52.57%), neochlorogenic acid (NCGA, 47.13%), and cryptochlorogenic acid (CCGA, 0.30%) were identified. During the growth and development of peach fruits, the content of CGAs generally showed a trend of rising first and then decreasing. Notably, the contents of quinic acid, shikimic acid, p-coumaroyl quinic acid, and caffeoyl shikimic acid all showed similar dynamic patterns to that of CGA, which might provide the precursor material basis for the accumulation of CGA in the later stage. Moreover, CGA, lignin, and anthocyanins might have a certain correlation and these compounds work together to maintain a dynamic balance. By the comparative transcriptome analysis, 8 structural genes (Pp4CL, PpCYP98A, and PpHCT) and 15 regulatory genes (PpMYB, PpWRKY, PpERF, PpbHLH, and PpWD40) were initially screened as candidate genes of CGA biosynthesis. Our findings preliminarily analyzed the metabolic and molecular regulation mechanisms of CGA biosynthesis in peach fruit, which provided a theoretical basis for developing high-CGA content peaches in future breeding programs.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Integrative Analysis of Metabolome and Transcriptome Reveals the Mechanism of Color Formation in Liriope spicata Fruit
    Gan, Sichen
    Zheng, Gang
    Zhu, Shoukuo
    Qian, Jieyu
    Liang, Lijun
    [J]. METABOLITES, 2022, 12 (02)
  • [2] Integrative analysis of non-targeted metabolome and transcriptome reveals the mechanism of volatile formation in pepper fruit
    Liu, Yuhua
    Zhou, Jiahao
    Yi, Cheng
    Chen, Fengqingyang
    Liu, Yan
    Liao, Yi
    Zhang, Zhuqing
    Liu, Wei
    Lv, Junheng
    [J]. FRONTIERS IN GENETICS, 2023, 14
  • [3] Integrative transcriptome and metabolome analysis reveals the mechanism of fulvic acid alleviating drought stress in oat
    Zhu, Shanshan
    Mi, Junzhen
    Zhao, Baoping
    Wang, Zhaoming
    Yang, Zhixue
    Wang, Mengxin
    Liu, Jinghui
    [J]. FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [4] Integrative Analysis of Metabolome and Transcriptome of Carotenoid Biosynthesis Reveals the Mechanism of Fruit Color Change in Tomato (Solanum lycopersicum)
    Hu, Jiahui
    Wang, Juan
    Muhammad, Tayeb
    Yang, Tao
    Li, Ning
    Yang, Haitao
    Yu, Qinghui
    Wang, Baike
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (12)
  • [5] Integrative analysis of the metabolome and transcriptome reveals the potential mechanism of fruit flavor formation in wild hawthorn (Crataegus chungtienensis)
    Wu, Xien
    Luo, Dengli
    Zhang, Yingmin
    Jin, Ling
    Crabbe, M. James C.
    Qiao, Qin
    Li, Guodong
    Zhang, Ticao
    [J]. PLANT DIVERSITY, 2023, 45 (05) : 590 - 600
  • [6] Integrative analysis of the metabolome and transcriptome reveals the potential mechanism of fruit flavor formation in wild hawthorn(Crataegus chungtienensis)
    Xien Wu
    Dengli Luo
    Yingmin Zhang
    Ling Jin
    M.James C.Crabbe
    Qin Qiao
    Guodong Li
    Ticao Zhang
    [J]. Plant Diversity, 2023, 45 (05) : 590 - 600
  • [7] Integrative analysis of metabolome and transcriptome reveals the mechanism of color formation in pepper fruit (Capsicum annuum L.)
    Liu, Yuhua
    Lv, Junheng
    Liu, Zhoubin
    Wang, Jing
    Yang, Bozhi
    Chen, Wenchao
    Ou, Lijun
    Dai, Xiongze
    Zhang, Zhuqing
    Zou, Xuexiao
    [J]. FOOD CHEMISTRY, 2020, 306
  • [8] Integrative analysis of the metabolome and transcriptome reveals the molecular regulatory mechanism of isoflavonoid biosynthesis in Ormosia henryi Prain
    Wang, Jiaqi
    Li, Lu
    Wang, Zhihua
    Feng, Anran
    Li, Huiling
    Qaseem, Mirza Faisal
    Liu, Liting
    Deng, Xiaomei
    Wu, Ai-Min
    [J]. INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 246
  • [9] Integrative analysis of the metabolome and transcriptome reveals the mechanism of polyphenol biosynthesis in Taraxacum mongolicum
    Zhao, Xing
    Li, Yiguo
    Huang, Yuanchong
    Shen, Jun
    Xu, Huini
    Li, Kunzhi
    [J]. FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [10] Integrative Analysis of the Transcriptome and Metabolome Reveals the Mechanism of Chinese Fir Seed Germination
    Chen, Xiangteng
    Zhao, Guangyu
    Li, Yanglong
    Wei, Shumeng
    Dong, Yuhong
    Jiao, Ruzhen
    [J]. FORESTS, 2023, 14 (04):